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Abstract

Unsafe water kills 1.2 million people every year, yet there is little research on the envi-
ronmental and social risk factors of waterborne disease incidence and its consequences
on children’s learning. Building on recent advances in hydrological engineering, we
construct a hydrological model for Tanzania that simulates the appearance of stagnant
water pools – essential to the growth and spread of waterborne pathogens – which we
use as a measure of waterborne disease potential. Using a difference-in-differences
approach, we find that children exposed to one standard deviation larger waterborne
disease potential have 0.03 standard deviations lower test scores, and the main symp-
tom of waterborne diseases, diarrhoea, increases by 11%. These results mask important
heterogeneities: We find that the most vulnerable children are those who live in urban
areas with poor sanitation. Access to safe sanitation attenuates the negative effect of
waterborne disease potential on both children’s health and learning, which suggests that
policy-makers should incorporate local environmental risk factors when implementing
sanitation policies in regions vulnerable to waterborne disease.
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1 Introduction

Waterborne diseases are a leading cause of death and disability in the world, contributing to 5.3% of
DALYs (disability-adjusted life years) from all diseases and leading to 1.2 million deaths annually,
of which 485,000 are from diarrhoea alone.1 This means the global disease burden of waterborne
diseases exceeds that of AIDS or malaria (UNICEF, 2022b). In contrast to other leading global
diseases, 90% of the disease burden specifically affects children under 5 years (Prüss et al., 2002).
Waterborne diseases are caused by microbes, bacteria and parasites harmful to humans and spread
by drinking or having physical contact with water. For example, cholera causes acute diarrhoea
and is caused by the intake of cholera bacteria, and the Rota virus causes diarrhoea and abdominal
pain.2 These diseases can be fatal, in particular for young children and infants, as it leads to severe
dehydration and it is the second most common cause of child mortality in the world.

The large documented costs to human life that waterborne diseases pose are made all the more
tragic by the fact that waterborne diseases are almost completely preventable, as seen by the very
low prevalence in high-income countries. While waterborne diseases only represent 0.4% of the
total disease burden of Europe, the disease burden in Africa is upwards of 14%, making water-
borne diseases one of the continent’s most debilitating conditions. This makes policy to tackle
waterborne diseases even more relevant, as large reductions in waterborne diseases are possible:
For instance, the WHO estimates that 94% of diarrhoeal cases are preventable through changes in
water, sanitation and hygiene (WASH) practices or other changes in the environment (WHO, 2010).

Despite the high disease burden of waterborne diseases, existing evidence is scarce on the causal
effect of exposure to waterborne disease on children’s human capital. We focus on arguably the two
most important facets of human capital in children: Their health and their learning. We causally es-
timate the effect on children by developing a hydrological model which simulates the formation of
stagnant water pools that encourage the proliferation of waterborne pathogens and present a plau-
sibly exogenous risk factor of waterborne diseases, waterborne disease potential (WBD Potential).
To the best of our knowledge, we are the first to causally address the effect of waterborne diseases
on key measures of children’s learning: Proficiency tests in Mathematics, English and Swahili for
school-aged children in Tanzania.

We estimate an increase in the probability of contracting diarrhoea – and only diarrhoea of the
health outcomes we test, which is indicative of a higher prevalence of waterborne disease: One stan-
dard deviation increase in WBD Potential increases the prevalence of diarrhoea by 10.6% relative to
the mean diarrhoea prevalence. We also find that children exposed to one standard deviation larger
waterborne disease potential have 0.03 standard deviations lower test scores. Interestingly, we find
that WASH quality at the community level matters more than the household level for attenuating
the negative effects of WBD potential. This suggests the existence of positive spill-over effects
from households investing in improved water, sanitation and hygiene (WASH) infrastructure and

1According to estimates by the World Health Organization (WHO, 2022a). The WHO also states that 829,000
people die from diarrhoea annually when combining deaths from unsafe drinking water and sanitation practice

2This is in contrast to mosquito-born malaria which is contracted in the bloodstream from a parasite and typically
not classified as a waterborne disease.
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speaks against a “piecemeal approach” to lowering disease incidence with WASH infrastructure, in
line with recent findings (e.g. Duflo et al., 2015).

Our main analysis uses the Uwezo surveys for the period 2011-2017, a nationally representative
dataset for children in Tanzania. Key to our understanding of the effect of WBD Potential, Uwezo
surveys employ standardised testing on all children aged 6-16 in the surveyed household. Hence,
an important contribution of this paper is that we can more accurately assess to what extent disease
affects children’s current school performance and learning. Additionally, in contrast to many other
education surveys, we can assess the score of children not enrolled in school which allows us to
exclude the channel that our results are driven by selective school dropouts. Lastly, we comple-
ment the test scores with detailed survey information on children’s health from three waves of the
Demographic and Health Survey of Tanzania covering the years 1999, 2010 and 2015.

The findings in this paper have two key policy implications: First, we show that where stagnant
water pools form and the risk of waterborne diseases is higher, there are meaningful effects on the
incidence of waterborne diseases and effects on children’s learning and school performance. This
means that flood forecast models, which are becoming increasingly operationalised, can be used
to forecast future waterborne disease outbreaks, and to improve resilience in vulnerable areas with
targeted healthcare investments. Second, sanitation programmes seeking to reduce the incidence of
waterborne diseases can be made more cost-effective by targeting villages and communities where
the risk of waterborne diseases is high with high-quality sanitation.

To the best of our knowledge, this paper is the first to causally assess the costs of waterborne
diseases on both children’s health and learning. Epidemiological studies have found that the diar-
rhoea burden in childhood predicts later-life cognitive outcomes (??), but this literature is largely
associative3. To recover causal estimates, we use climatic variation as part of our identification
strategy. The literature on climate and waterborne disease finds that the most important predictors
of disease outbreaks are floods, rainfall and high temperatures (Levy et al., 2016). However, while
this literature uses arguably exogenous climatic variation, the research designs typically used are
unlikely to result in causal estimates.4 Additionally, evidence from Sub-Saharan Africa, where wa-
terborne diseases are the most debilitating, is especially scarce, since much of the existing literature
has focused on high- and middle-income countries (Levy et al., 2016).

In the economics literature, there are studies that causally analyse the effect of floods and heavy
rainfall on different (child) outcomes. However, floods are extreme events that can affect children’s
health and learning through more channels than waterborne diseases alone – e.g. by the destruc-
tion of agriculture and infrastructure (Cann et al., 2013; ?; ?; ?; Ide et al., 2021). Less extreme

3Studies in this literature typically rely on a control variable strategy to control for potential confounders, but since
diarrhoea incidence is strongly linked to socio-economic status (?) unobservable characteristics of the household that
affect both diarrhoea and later-life outcomes may bias these estimates.

4Most papers on floods and waterborne diseases are typically categorised as outbreak reports or use a non-flooded
comparison group. Outbreak reports exploit time variation to see if disease outbreaks at a given location can be linked
to the recent occurrence of a flood or heavy rainfall (??). Studies using an explicitly defined comparison group, on
the other hand, typically use a cross-sectional approach, exploiting the difference between flooded and non-flooded
areas (??). However, since the latter area typically has lower innate flood risk, and selection into these areas is likely
endogenous, these studies are unlikely to recover causal estimates.
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rainfall events may also affect socio-economic outcomes through many different channels, espe-
cially in developing countries (Mellon, 2021; ?), which makes rainfall unsuitable as an instrument
for waterborne diseases. Our key contribution is that we can separate the impacts of local rainfall
from stagnant water which can be formed from non-local rainfall upstream, allowing us to isolate
the causal effect of an increased risk of waterborne diseases. Additionally, by using a continuous
measure of WBD Potential, we focus on the intensive margin of more commonly occurring con-
temporaneous shocks, which are unlikely to be as debilitating as natural disasters such as floods.
Another contribution of our empirical approach is that we can sharply time both the measured
stagnant water and outcomes, making sorting across areas unlikely.

While we are unaware of studies analysing the effect of waterborne disease on health and learn-
ing, some studies explore the consequences of waterborne diseases from the opposite direction: By
estimating the effect of improving WASH infrastructure on health, and the challenges that arise
in effectively implementing these programs to combat disease. Kremer et al. (2022) provide a
meta-analysis of water-quality random control trials and find that water-quality interventions im-
prove both reported diarrhoea incidence and mortality. Duflo et al. (2015) provide evidence that
household-level programs expanding good sanitation practices reduce diarrhoea episodes by 30-
50%, while ? and ? highlight the importance of context-specific determinants for the success
of community-based sanitation programs to improve health outcomes related to waterborne dis-
eases. From a historical perspective, the expansion of water sewerage and filtration services in the
United States and Sweden reduced or eradicated mortality traced to waterborne diseases (Alsan and
Goldin, 2019; Cutler and Miller, 2005; Knutsson, 2020). Our results complement these findings
by analysing an environmental risk source of waterborne disease driven by local climate, and by
further analysing to what extent water and sanitation practices mitigate these effects.

We also draw from the existing strand of literature which shows the link between health, in
particular waterborne diseases, and schooling. A large literature exists on parasitic worms, one
group within waterborne diseases, and how deworming positively affects schooling (??). But a
distinguishing disease characteristic of parasitic worms is that they can live within their human
host for several years. In contrast, waterborne diseases due to bacteria, spores or viruses tend to
develop in days or weeks. Our estimation strategy thus more accurately captures these types of
waterborne diseases and complements the existing more comprehensive literature on how parasitic
worms affect schooling. We thus focus on more contemporaneous shocks of WBD Potential and
provide evidence on recent increases in waterborne diseases and learning: For one, sick or recov-
ering children likely have a reduced capacity to concentrate and learn if attending school. Second,
disease can also lead to children missing more school. Cattan et al. (2023) show that being absent
as little as ten days in primary schooling in Sweden leads to 4.5% lower academic performance, and
? estimate that missing ten classes of secondary schooling in the United States reduces test scores
by 3-4% of the standard deviation. Our paper contributes to the existing literature by analysing how
contemporaneous changes in health affect this intensive margin of learning.

The rest of this paper is organised as follows: Section 2 provides additional information about
waterborne disease and education in Tanzania. Section 3 summarises our data sources and key
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variables, while Section 4 explains our empirical strategy. Section 5 presents our results and Sec-
tion 6 provide complementary robustness checks. Finally, Section 7 concludes the discussion and
presents our policy recommendations.

2 Institutional background

2.1 Prevalence and causes of waterborne disease in Tanzania

Waterborne diseases are illnesses caused by pathogens that are transmitted through contaminated
water sources5. Tanzania lies in the ‘belt’ of the world’s highest waterborne disease incidence,
which stretches through the central part of Sub-Saharan Africa, a region characterised both by a
favourable climate for waterborne pathogens as well as lack of access to safe water and sanita-
tion. The number of diarrhoeal episodes per person per year is 1.1 episodes in Eastern Sub-Sahara
where Tanzania is located, which is only second in the world to Central Sub-Saharan Africa (1.21)
(Troeger et al., 2018). Tanzania has had several outbreaks of waterborne diseases such as cholera in
the past few decades. A recent example of a cholera outbreak occurred around Tanzania’s capital,
Dar es Salaam, in 2015, with 16,521 reported cholera cases in total (Chae et al., 2022), but other
waterborne disease outbreaks have been documented as recently as in 2022 (Masunga et al., 2022;
WHO, 2022b). Waterborne diseases have historically been classified as ‘neglected’ diseases by
Tanzanian authorities and have received much less attention than officially prioritised diseases such
as HIV and malaria (Tanzania Ministry of Health and Social Welfare, 2008), despite the fact that
waterborne diseases carry a higher disease burden than HIV and Malaria for children in Tanzania
(Vos et al., 2020).

Environmental factors play a critical role in enabling the survival, growth and transmission of
waterborne pathogens6. El Niño events, which occur every 3-5 years, and lead to an increase in
rainfall and flood events across East Africa are associated with a 3-fold increase in cholera incidence
(Moore et al., 2017). In a review of the epidemiological literature, Levy et al. (2016) found that the
most important predictors of diarrhoeal disease outbreaks were floods, followed by heavy rainfall
and high temperature. Heavy rainfall is thought to affect diarrhoea incidence primarily through its
effect on floods and surface water contamination (Levy et al., 2016). Detailed mapping in a district
in Tanzania showed that low-lying areas with high water-tables are more susceptible to cholera as a
result of rainfall, as this leads to the accumulation of surface water which contaminates pit latrines
and shallow drinking water wells (Mayala et al., 2003).

2.2 Prevention and treatment of waterborne disease in Tanzania

Tanzania has made great strides in reducing childhood diarrhoea mortality, with the mortality rate
declining by 89% from 1980 to 2015 (Masanja et al., 2019), but incidence remains high. Most

5See Appendix B for more details on the definition and characteristics of waterborne diseases
6See Appendix B. II for more details on transmission mechanisms
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of the lives saved are attributed to treatment with oral rehydration salts (ORS), which replenishes
fluids lost by diarrhoea, in combination with improved nutritional status, making children more
resilient to the effects of diarrhoea. These are relatively affordable on the global market, costing
close to 0.56 USD per treatment (UNICEF, 2022a). In contrast, less than 3% of the reduction in
diarrhoea-related mortality is attributed to improved water and sanitation, which is evident by the
fact that higher-quality sanitation coverage increased only from 8 to 15% over the same period
(Masanja et al., 2019). Hence, disease management has been focused on treatment rather than
prevention, leaving room for large variation in local disease environment and incidence. In high-
income countries, large-scale historical investments in water and sanitation have been crucial in
reducing childhood mortality and diarrhoeal incidence (Alsan and Goldin, 2019). However, this
infrastructure is costly, and lower-cost piecemeal approaches in Tanzania have been unable to curb
diarrhoea-related morbidity (Briceño et al., 2017).

Treatment with ORS or antibiotics is usually administered at health clinics, which implies that
access to high-quality healthcare is necessary to relieve consequences of waterborne disease in-
fection. In 1984 Tanzania set up the National Control of Diarrhoeal Disease to combat childhood
mortality, which focused on creating local clinics that could administer ORS (Masanja et al., 2019).
This may explain why care-seeking for diarrhoea in children in Tanzania is among the highest in
Sub-Saharan Africa, with more than half of children sick with diarrhoea taken to a health clinic
(Schellenberg et al., 2003), and more than 90% live closer than 5 km from a primary health facility
(Tanzania Ministry of Health and Social Welfare, 2008). However, this masks large inequalities in
the quality of received healthcare. A study in rural Tanzania found that only 1 of 6 children with
diarrhoea received ORS, citing low diagnostic capabilities and a lack of medical supplies (Schellen-
berg et al., 2003), while other parts of Tanzania see ORS administration rates over 50% (Masanja
et al., 2019). It is not uncommon for rural families to bypass the local health clinic, especially if
living close to a hospital (Kahabuka et al., 2011), which suggests that while there is high access to
health clinics, quality is often poor and unevenly distributed. Thus, we expect waterborne diseases
to spread more easily in urban, densely populated areas, where contamination of water sources is
more common, but the health consequences once afflicted by a waterborne disease may be worse
in rural areas with lower access to high-quality healthcare.

2.3 Education and learning in Tanzania

In Tanzania, schooling starts with pre-primary schooling at ages 5-6, although it is common that
children also attend pre-school for 2-3 years, which by global standards is relatively formal school-
ing (Bietenbeck et al., 2019). This is followed by seven years of primary schooling at ages 7-13,
four years of ordinary secondary school (ages 14-17), and two years of advanced level secondary
school (ages 18-19)7. The adult literacy rate was 77.5% for men and 62.2% for women in 2012,
but literacy among current pupils is higher, with the literacy rate being 86% for 15-24 year-olds.
In 2012, 83% of the population reported having attained primary schooling, and 12.9% secondary

7This information and subsequent on Tanzania school system from UNESCO (2014) and World Bank (2016)
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schooling. Schooling expansion has been swift in Tanzania, and for example ordinary secondary
school enrolment has increased from 6% in 2002 to 34% in 2013.

The effect of waterborne diseases on learning and education as a whole is understudied, but
there are key links between health and the state of learning in Tanzania. For one, many students drop
out and do not finish primary schooling; 65.1% (72.8%) of boys (girls) finish primary schooling.
Most dropouts are due to unknown reasons (truancy), but health reasons are common. For one,
early-life stunting, from e.g. repeated exposure to diarrhoeal diseases, is an important cause of both
absence and lower cognitive ability. Second, current health issues also lead to greater dropouts. For
example, in 2014, a survey conducted in three Tanzanian regions stated that health problems caused
6.2% of dropouts, and in a 2013 school census, 3% of survey respondents reported dropping out
due to illness or having to take care of someone ill (UNESCO, 2014). Even school absence as short
as 10 days has been shown to have long-term consequences (Cattan et al., 2023) indicating that
even if health is only temporarily affected, losses from learning may be permanent. Lastly, even
when attending school, learning can be limited: In a survey performed by the World Bank, only
40% of students in year 4 (mainly ten-year-olds) could perform a year 3 mathematics task such
as 6÷ 3 or 7× 8. An important cause of limited learning is low quality of educational resources
(Mgema, 2022; Ilomo and Mlavi, 2016), however fatigue or frequent absences due to waterborne
diseases are likely to also negatively affect the capacity for learning.

3 Data

3.1 Geographic data

To generate our treatment measure, waterborne disease potential, we construct a high-resolution
hydrological model to simulate the flow of surface water across all of Tanzania. We aim to generate
a treatment measure with the highest possible geographic resolution that is feasible for simulation
at this scale, using common input data components that are necessary for hydrological (flow) and
hydraulic (distribution) simulations. We therefore make use of the latest available global gridded
datasets at the highest possible resolution, shown in Figure 1. For topographic data, which under-
lies the hydraulic flow component of the model, we use data from the Shuttle Radar Topography
Mission (Farr et al., 2007). Rainfall and evaporation data, which allows water to enter and leave
the model, are extracted from ERA5 reanalysis data (Hersbach et al., 2018). Finally, to account
for the fact that water can also differentially disappear into the ground through soil infiltration, we
use the ISRIC 2.0 global soil database (Poggio et al., 2021), which contains high-resolution data
on soil composition across the globe. Appendix A. I contains more detailed descriptions of each of
these data sources, while Section 4.1 describes the methodology we use to simulate stagnant water
across Tanzania over time.

In order to investigate treatment heterogeneity in terms of local climate, we use historical annual
mean precipitation and temperature from the WorldClim v2 database (Fick and Hijmans, 2017),
covering the period 1970-2000.
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Figure 1
Data sources used to construct the WBD Potential measure

Note: The hydrological model uses as input four high-resolution gridded geographic datasets: (a) topographic data
from SRTM, (b) soil infiltration data from the ISRIC 2.0 soil database, and (c) hourly rainfall and (d) potential evapo-
transpiration from ERA-5 reanalysis data.

3.2 Demographic and Health Surveys (DHS)

To explore health and nutrition-related outcomes linked to waterborne diseases we use the Demo-
graphic and Health Surveys (DHS). We use data from three available waves of DHS: 1999, 2010
and 20158.

DHS are repeated cross-sectional surveys representative at the national level, with two im-
portant features for our analysis. First, DHS provides spatial coordinates to villages (so-called
’clusters’), although for privacy reasons the coordinates are randomly shifted 0-5 km. Since village
locations will differ across waves but we are interested in the treatment effect within a particular
geographic space we allocate each household to a 50x50 km grid cell which is fixed over time. The
cells are large enough that they capture the variation in the share of stagnant water over time, but
arguably small enough to control for most unobserved geographical variation.

The second adantage of using DHS cis that the survey information on health issues of children
is given for the two weeks preceding the survey date. We can therefore accurately capture short-
term changes in health. DHS collects information on children’s recent health issues (for example,
”has your child had diarrhoea in the past two weeks?”) as well as basic anthropometric features

8The DHS Program is funded by USAID and has collected survey data with a particular focus on children and
women’s health since 1984. For more information, visit https://dhsprogram.com/
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such as height for age and weight for age. Importantly, since the children surveyed in DHS are
below five years old, they are likely more sensitive to waterborne diseases than older children of
school age (?). Assuming that the risk of contracting waterborne disease decreases with age, we
can interpret these results as upper-bound estimates for children of school-going age.

3.3 Uwezo surveys

To analyse learning outcomes we use the Uwezo surveys. These are collected by the NGO Twazeza

and are large-scale assessments of school-age children in Kenya, Uganda and Tanzania. The sur-
veys are administered to schools, communities and households, and are repeated cross-sections. We
utilise surveys from the survey waves in the years 2011, 2013, 2014, 2015 and 2017, and all survey
waves are representative at the district level. In our paper, we employ the household surveys.9 For
each household, there is collected information on household wealth and assets, including whether
the household has a toilet, as well as basic socio-economic information such as the child’s age, year
of schooling, whether they are currently enrolled, mother’s age and mother’s schooling.

There are three features of the Uwezo surveys that are crucial for our purpose of studying the
effect of waterborne diseases on learning. First, all school-aged children (aged 6-16) in the surveyed
household are tested in basic Mathematics, English and Kiswahili by being administered a random
sample of question cards in each subject. This allows us to measure learning and cognitive ability,
which is our main outcome of interest. Another advantage is that test scores are collected for all
children of school-age in the household which makes us able to capture the effects also on those
children who drop out of school due to e.g. ill health. Lastly, the surveys are administered by
Twazeza. The NGO works largely independently of the Tanzanian government/authority, and the
tests have no bearing on the school grades of the children or the evaluation of teacher performance.
Hence, there is little reason to believe that parents or schools would influence performance during
the tests, which may be an issue when using test scores from school-administered tests.

Depending on how well the child answers the question sets, the children get allocated a score:
The scores are discrete and are 1-5 for reading in English and Kiswahili, and 1-6 for Mathematics,
except in wave 2015 where scores are given between 1 and 9. For example, scores in reading from
1 to 5 are based on whether the child can recognise letters (1), recognise words, read a paragraph
or read a short story (5) 10. We have no reason to think that the effects would be different for verbal
and quantitative abilities, and hence we construct our main outcome as the mean age-standardised
test score across the three subjects. We standardise each child’s test score by wave to have mean
zero and standard deviation one, and then take the average and standardise again such that

Mean standardised test scores =
Avg Score−Mean(Avg Score)

SD(Avg Score)
(1)

9For more information, visit https://uwezotanzania.or.tz/
10In Mathematics, scores are based on whether the children can count, recognise numbers, order numbers, add,

subtract or multiply.
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where Avg Score is the average for each child across the three subjects.11 We thus end up with
a continuous measure of children’s current performance and learning which is comparable across
waves. In our results, unless otherwise stated we refer to the mean standardised test score as “test
scores”. Test scores are missing for 8% of our sample which we exclude from our analysis. If these
differ systematically from the non-missing values this could bias our result. For example, if the test
scores are missing because children did not get tested as they were ill, we may underestimate the
effect of WBD Potential on test scores.12

The second important feature of the Uwezo surveys is that we similar to DHS know the exact
survey date for the vast majority of observations. The third important feature of the Uwezo which is
different from DHS is that it contains accurate geographic information which is time-invariant, but
this is on the smallest available administrative area – wards – rather than coordinates of villages and
neighbourhoods.13 To summarise, for health outcomes using the Demographic and Health surveys
we create 502 km grid cells that contain villages from different waves, while for the Uwezo surveys
the geographic unit we study wards that are time-invariant.

4 Empirical strategy

4.1 Algorithm to model waterborne disease potential

We are interested in estimating the causal effect of waterborne diseases on children’s health and
learning. Since disease incidence likely correlates with unobserved geographic factors, we require
exogenous variation in the probability of contracting waterborne diseases in order to arrive at a
causal estimate of waterborne diseases. A naı̈ve approach would be to simply use variation in rain-
fall to proxy for this risk, as extreme rainfall events are associated with disease outbreaks (Levy
et al., 2016; Lo Iacono et al., 2017). However, local rainfall in itself is an insufficient predictor
of the risk of waterborne diseases since rainfall contributes to flooding and the formation of pools
of stagnant water. For one, also non-local rainfall from upstream can contribute significantly to
the formation of stagnant water pools which equally enables a waterborne transmission pathway,
usually found to be a central source of transmission (Eisenberg et al., 2013; Leclerc et al., 2002).

11That is, for each child and Subject ∈ {English, Kiswahili, Maths} we standardise each score by wave:

Subjectstd =
Score−Mean(Score)

SD(Score)

where mean and standard deviation, SD, are wave-specific. We then take the mean of the standardised subject-
specific variables and standardise, again by wave, to construct Avg Score:

Avg Score =
Englishstd +Kiswahilistd +Mathsstd

3

12Assuming that children too sick to take the test would have performed relatively worse, excluding these children
would attenuate our results to zero. We test if WBD Potential predicts the degree of missing values in test scores (for
each separate subject) with our main model specification but we find no systematic correlation.

13The average ward area is 253 square kilometres, and the wards are of similar size as e.g. UK parliamentary
constituencies.
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Second, local rainfall can affect children’s outcomes in ways not related to waterborne diseases
(Mellon, 2021). To improve upon the rainfall measure, we use well-established hydrological mod-
elling methods and high-resolution geospatial datasets to simulate the overland flow of water and,
importantly, the formation of stagnant water pools. Since the growth of waterborne pathogens
mostly occurs in stagnant water, and we want to use variation in this measure as our treatment, we
subtract permanent water bodies and flowing water from the simulation output.

As input to the model, we use the global gridded geographic datasets described in Section 3.1
and Appendix A. I. Simulations are run at a spatial resolution of 90 m, which is orders of magnitude
smaller than the ward level, while being feasible enough to enable simulation over the time scale
of months at the country level.14 For more details on the computational scheme, Appendix A. II
provides a schematic of the input data and algorithm used to model stagnant water.

The modelled waterborne disease potential (WBD Potential) is thus measured at the local area
level: The area of a circle of a 10 km radius where the centroid is the village coordinates for
DHS, and wards for the Uwezo surveys. We define WBD Potential for each area and survey year,
Sa,y ∈ [0,1], as the time average of the share of the local area Aa covered by stagnant water AS,t at
day t over the past n days from the date of the visit:

Sa,y =
∑

n
t=1

AS,t
Aa

n
(2)

Figure 2 shows the spatial distribution and resolution of the local areas as defined in the DHS
and Uwezo surveys in the top row. In the bottom row, we provide a quasi-three dimensional visual-
isation of the output from the hydrological model for an arbitrary point in time, as a first validation
that our measure captures that stagnant water pools tend to form in low-lying areas prone to accu-
mulating water. A more intense red colour denotes a higher value of Sa,y. Here we can see that
stagnant water has been trapped in the lowlands next to the Lake Victoria coast, and in the valleys
of a group of mountains.

In our main specification we average over the last two weeks prior to the date of the survey.
We choose two weeks mainly for two reasons. First, we prefer a short time span since waterborne
pathogens can grow and infect humans within days and even hours in their ideal conditions15.
Second, we do not aggregate under a smaller time period to better account for the additional trans-
mission time of the disease via the faecal-oral channel and since there is up to a week of variation
in the date of the survey within the ward of the Uwezo surveys. Thus, extending the definition of
treatment to two weeks allows us to also capture households surveyed later within the local area we
define treatment on.16

Lastly, as a robustness and validation exercise, we construct an alternative treatment measure

14The runtime of hydrodynamic simulations are very sensitive to the level of resolution and typically with the
cube of the spatial resolution. However, a recent evaluation of large-scale 2D hydrodynamic simulations for several
European rivers show that resulting flooded areas and water levels are insensitive to variations in spatial resolution,
once it is finer than 100 m (Dazzi et al., 2021; Falter et al., 2013, 2016). This is important as it allows us to feasibly
simulate the time evolution of stagnant water across a whole country such as Tanzania over time.

15See e.g. Appendix B. II.
16In robustness checks in Section 6 we vary the number of weeks included in Sa,y.
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using an external hydrological model coupled with coarse occurrence data on surface water from
satellite data. We find a relatively strong correlation between the two measures for urban areas, but
weaker for rural areas, which could be due to several reasons. See Appendix A. III for a discussion
of this.

Figure 2
Waterborne disease (WBD) potential with DHS and Uwezo surveys

Note: This figure displays the output of our simulation which contains our main treatment variable, waterborne disease
(WBD) Potential in one particular time step. Here we also highlight the difference in output between DHS (left)
and Uwezo (right). In the top row, we display the available local area information we have. For DHS clusters we
have different locations across waves thus necessitating the 50x50 km2 gridcells. For the Uwezo surveys, we have
time-invariant wards. The bottom row shows the output for both types of spatial information for a subset of Tanzania
(roughly indicated as the view along the black arrow with Lake Victoria towards the bottom of the figure). For DHS,
treatment will be a weighted average of WBD Potential intensity within the gridcell. For Uwezo, treatment is always
given as a function of ward area.

4.2 DiD model specification

We estimate the following difference-in-differences model for outcome Y of individual i residing
in local area a, surveyed in calendar month m in the year y:

Yiamy = α
1
a +α

2
y +α

3
m +δSay + γRay +X ′iayβ + εiamy (3)
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where δ is the main coefficient of interest: Say ∼ (0,1) is our WBD potential measure in each
ward in the two weeks prior to the date of the survey. Hence, δ captures the causal effect of an
individual i being exposed to a higher likelihood of waterborne diseases in their local area a in year
y. Since the WBD Potential share always lies between 0 and 1, the value of the coefficient presented
in results below is the treatment effect when the stagnant water share is 100% of the local area – an
unrealistic scenario. Thus, for interpretation of the results we refer to the coefficient scaled down
by ten, reflecting if the WBD Potential is equal to 10%17.

Next, as the share of stagnant water over time is potentially affected by local rainfall, and local
rainfall may also affect the outcome, we include the last two weeks of rainfall at the local area level
for each wave, Ray, in our baseline specification. We control for time-invariant unobserved differ-
ences across wards with ward fixed effects, α

1
a , as well as survey-year fixed effects α

2
y (equivalent

to survey wave) and calendar month fixed effects α
3
m.

Lastly, we also include a vector of controls in X on the individual level (gender, age, whether the
mother had secondary or higher education, the mother’s age, and an index for household wealth).
We impute missing values within these variables as the sample mean. In the subsequent analysis
we also distinguish between rainy and dry areas defined as the 20-year average yearly precipitation
being above or below 1000 mm (which roughly corresponds to the mean in our sample). We do
this because we expect that rainy wards are more likely to have a higher baseline of waterborne
pathogens, as these are more likely to survive in more humid areas and result in more cases of
waterborne diseases.

To explore potential heterogeneities we also interact the variable of interest, Say with an indica-
tor for different facilities and habits regarding water, sanitation and hygiene (WASH) (Section 5.4).
Formally, we estimate

Yiamy = αw +αy +α
3
m +δ1Say +δ2WASHiay +δ3Say×WASHiay + γRay +X ′iayβ + εiamy (4)

where WASH is a binary indicator of sanitation status, such as whether the household has a
toilet. Here, we are interested in δ1, δ2 and δ3. The parameter δ1 is the effect of WBD Potential
on our outcome when WASH=0, δ2 is the direct effect on Yiwy from WASH. The key contribution
of this model is δ3, which is the coefficient on the interaction term. This estimate will give us the
contribution to the outcome of the WASH variable through the effect of WBD Potential. We will
carefully discuss potential sources of endogeneity in this interaction variable, but we nonetheless
believe these results provide important, if sometimes only causally suggestive, evidence.

4.3 Descriptive statistics

Table 1 provides summary statistics of the DHS and Uwezo surveys, providing information on the
individual and household level in Panel A and for the local area level in Panel B. For DHS, we

17While this is an uncommon event, it is far from extreme. In the DHS data, we find this to occur in 5% of the
sample, which is a far greater frequency than that of a devastating flood or other natural disasters.
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have information on 253 grid cells and on average 420 clusters (villages or neighbourhoods) per
wave. There is large variation in household wealth and sanitation, and 78% of clusters are rural.
Overall, WBD Potential has a strong mode at zero, where the average level is 1.7%, but there is
large variation (see also Figure C.1 in Appendix C for a graphical representation of the distribution).

For the Uwezo surveys in the bottom half of Table 1, we include our main outcome, standardised
test scores. The test scores are standardised with mean zero and standard deviation one by wave,
thus the total sample has a slightly lower mean. Children are on average 11.1 years old, and
46% are girls. Households are relatively large with seven people on average. Mothers have a
similar education to other national surveys (see Section 2.3) where 24% have at least a secondary
education. We also provide a wealth index based on normalised principal components of household
assets, which is normalised to have mean zero and standard deviation one, by each wave. The
components in the wealth index are the type of wall, whether the household has a radio, television,
bicycle, motorbike, cattle, or electricity. Next, we see that 73% of households have any type of
toilet. In panel B we provide ward-level characteristics on the 3876 wards. 84% of the wards are
rural. In our sample, a ward includes approximately 20 households sampled per ward, but there is
a large variation in both the number of households and villages sampled.

To get an overview of the spatial distribution of our treatment measure we also present Figure 3.
While this is only representative of the time periods covering the Uwezo surveys, the distribution of
treatment intensity compares favourably to the historical spatial distribution of cholera incidence,
which has shown a higher incidence in the Lake Victoria region, south-east, and north-west part of
the country, where we also find greater likelihood of stagnant water forming (Nkoko et al., 2011).
There is a large variation in the ward area, which correlates negatively with population density. We
also see that WBD Potential (measured as the average over waves) tends to concentrate in smaller
wards.18 There is relatively little correlation between distance to rivers and WBD Potential, which
is precisely what we would expect since WBD Potential is a function of stagnant water.

5 Results

5.1 Effects of waterborne disease potential on health

In the first set of results we test whether the channel we expect WBD Potential to act through is
indeed waterborne diseases and if there are effects on health. To explore the health mechanism we
make use of three waves (1999, 2010, 2015) of the Demographic and Health Surveys.

We first explore how well the measure we call WBD Potential captures waterborne disease
incidence. While DHS does not test for waterborne diseases specifically, they measure important
physical attributes of children, such as weight for height, and ask about recent health issues and
symptoms of ill health. We make use of these variables to test our main hypothesis that WBD
Potential affects waterborne disease incidence. We also conduct placebo checks on the effect of
WBD Potential on other health channels. In Table 2 we estimate our main DiD specification. In

18See Appendix C for a longer discussion.
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Table 1
Summary statistics: DHS and Uwezo

Mean SD Min Max

Demographic and Health surveys

A. Household and child characteristics
Birth Order 3.75 2.544 1 17
Girl 0.50 0.500 0 1
Age 1.93 1.416 0 4
Mother’s age 29.3 7.108 15 49
Mother total fertility 4.12 2.588 1 17
Household wealth index 2.88 1.382 1 5
Sanitation - none 0.23 0.420 0 1
Sanitation - unimproved 0.46 0.498 0 1
Sanitation - shared 0.056 0.230 0 1
Sanitation - improved 0.26 0.438 0 1

B. Cluster/Grid Cell characteristics
WBD Potential [0.1] 0.017 0.0522 0 0.512
Local precipitation (cm) 0.0081 0.0101 0 0.223
Urban share of clusters 0.22 0.414 0 1
Num. villages/wave 493.6 146.5 176 608
Num. households/wave 324.4 21.98 303 351

Grid cells: 253
Obs: 21,471

Uwezo surveys

A. Household and child characteristics
Test score (std) -0.020 0.997 -4.481 4.239
Woman 0.46 0.499 0 1
Age 11.1 2.792 6 16
Mother’s Age 36.3 5.903 16 60
Mother’s Edu ≥ Sec 0.24 0.408 0 1
Wealth (index) -0.0064 1.584 -2.230 24.58
Children in household 3.32 1.873 1 20

B. Ward characteristics
WBD Potential [0.1] 0.013 0.0361 0 0.812
Local precipitation (cm) 4.48 6.437 0 226.9
Rural ward 0.84 0.370 0 1
Ward area (sq.km.) 255.9 599.3 0.111 11437.0

Wards: 3876
Obs: 386,005

Note: Summary statistics of mean, standard deviation, minimum and maximum of each variable. Panel A displays
statistics across individuals, while Panel B displays statistics at the local area level.

Panel A, each column represents a different outcome which we estimate on the full sample. The
outcomes in the first two columns are outcomes most plausibly affected by waterborne diseases:
Diarrhoea, which is the symptom most closely associated with waterborne disease, and weight for
age (since severe diarrhoea tends to affect weight). The following four columns in Panel A are
outcomes that should not be affected by the waterborne disease to the same degree: Fever, cough,
anemia and height. Fever might e.g. be positive if our results are driven by increased malaria
incidence, or other mosquito-born illnesses such as dengue and Rift Valley fever, as fever is one
of the main short-term symptoms of malaria. Cough is mainly associated with respiratory disease,
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Figure 3
Spatial distribution of WBD Potential

Note: This map shows the geographic distribution of wards in Tanzania, together with population density (each dot
represents 10,000 people), major rivers, and the mean share of stagnant water, our main treatment measure, in each
ward in our sample period. Note that the mean share of stagnant water is only representative of the specific months and
years represented in our Uwezo survey waves, which is the period for which we ran our hydrological model, and is not
indicative of the long-term mean values for Tanzania.

while anemia and height are both long-run outcomes that should not be affected by WBD Potential
since this measure is defined as the change in stagnant water in the past two weeks. All health
outcomes are equal to one if the child has had the health issue at any point in the past two weeks,
while weight, anemia and height are tested at the date of the survey.

We find a large and statistically significant effect on the probability that the child has had di-
arrhoea: A ten per cent WBD Potential increases the probability of the child having had diarrhoea
recently by 2.75%. In other words, one standard deviation increase in WBD Potential increases the
probability that a child has had diarrhoea in the past two weeks by 1.4 percentage points, which is
an increase of 11% relative to the mean diarrhoea incidence. The coefficient on weight is negative
as expected but not statistically significant. The remaining outcomes that represent placebo checks
are reassuringly estimated close to zero and statistically insignificant..

As further placebo checks, in Panel B of Table 2 we estimate the effect of WBD Potential on
diarrhoea related to how likely it is that the child received contaminated water. In columns 1-2
we estimate the effect of WBD Potential on diarrhoea and split the sample by whether the child is
breastfeeding. We hypothesise that children who are breastfeeding are less likely to have received
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Table 2
WBD Potential effect on health and water

(1) (2) (3) (4) (5) (6)

Panel A. Health and physical outcomes

WBD Placebo

Diarrhoea W.Age Fever Cough Anemia Height

WBD Potential 0.275** -8.192 -0.0499 -0.0587 0.0722 27.35
(0.113) (6.244) (0.140) (0.144) (0.0961) (23.33)

Mean DV 0.13 88.49 0.22 0.21 0.40 92.12
Obs. 15,956 15,021 16,016 16,021 16,085 15,550
Clusters 242 242 242 242 242 242

Panel B. Health and water

Diarrhoea Fever

No Breastf Breastfeeds Not water Water Not water Water

WBD Potential 0.506*** 0.0844 -0.0822 0.300** 0.130 -0.0719
(0.152) (0.135) (0.202) (0.121) (0.391) (0.235)

Mean DV 0.11 0.14 0.13 0.13 0.22 0.22
Obs. 6,317 9,637 2,089 8,897 2,089 8,912
Clusters 241 241 185 240 185 240

Note: Standard errors in parentheses clustered on DHS cluster/village level. WBD Potential is the share of the area
covered in stagnant water in the two weeks preceding date of survey. * p<0.01 ** p<0.05 *** p<0.1. In panel A:
Columns 1-2 displays outcomes plausibly affected by waterborne disease. In column 1, the dependent variable = 1
if child has suffered from diarrhoea the past two weeks, and column 2 weight for age as percentile of wave median.
Columns 3-5 are placebo outcomes of health issues less associated with waterborne disease: Fever, cough and anemia
(note anemia = 1 for mild to severe measure, thus the high mean). Column 6 records height in cm, also less likely to be
affected by current waterborne disease. All health issues (diarrhoea, fever and cough = 1 if child has had in past two
weeks). In Panel B, the first four columns record the effect of WBD Potential on diarrhoea with different subsamples:
By whether the child is breastfed (columns 1-2, only ≤ 24 months children used in this sample), and whether the child
was given plain water in the past 24 hours. Columns 5-6 estimates the effect on fever from WBD Potential when
dividing the results by whether the child has been given water. Cell, Wave, Calendar month fixed effects and sum
of past two weeks precipitation used in all estimations. Individual level controls include birth order, multiple birth,
gender, age, mother’s age, total fertility of mother, toilet type.

food or water from other sources which should minimise the risk of contracting diarrhoea from
waterborne diseases. In these estimations we restrict the sample to children 24 months and younger
since children breastfeeding at an older age is uncommon. We estimate that for children who do
not currently breastfeed, 10% of WBD Potential increases the probability of the child having had
diarrhoea recently by 5.1pp (one sd of WBD Potential increases diarrhoea by 2.6pp). For children
who breastfeed the coefficient is small and statistically insignificant. While breastfeeding is not
randomised across children and these mothers or children likely differ in more than this aspect,
the large difference in the effect of WBD Potential is highly suggestive of a link between WBD
Potential, water and diarrhoea, and consistent with public health advice to breastfeed to reduce
diarrhoeal risk.

In columns 3-4, we perform the same estimation of WBD Potential on diarrhoea but instead
divide the sample by whether the child has been given plain water in the past 24 hours. As is con-
sistent with WBD Potential leading to an increase in the likelihood of water to contain pathogens,
children who have been given water recently have a 30pp higher likelihood of having had diar-
rhoea recently and this effect is statistically significant. For the children who have not been given
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water recently, we estimate a coefficient of -0.08, and it is not statistically significant. Here too,
the results suggest a direct link between WBD Potential, water and the likelihood of contracting
diarrhoea. As a final placebo check, in columns 5-6 we again run the same specification and split
the sample by whether the child was given water, but change the outcome to whether the child has
had a fever recently. If the effect on fever looks similar, it might suggest a general issue with health
in the community, or some interaction with the probability of contracting malaria. However, for
both subsamples of children we find that the coefficient is small and not statistically different from
zero. We take this as further support that WBD Potential accurately measures risk factors in water
becoming contaminated with waterborne pathogens.

Next, we provide further evidence that WBD Potential accurately reflects local stagnant water
by utilising an indicator which is collected in DHS: The amount of time (in minutes) the household
has to their main source of water. We estimate the effect of WBD Potential on the time it takes to
the water source, and also divide the sample by the source of water of the household: Whether they
preliminarily obtain water from a tap, well or from a natural source of surface water. Intuitively, if
WBD Potential accurately captures an increase in stagnant water, the amount of nearby surface wa-
ter in the ward should increase, reducing the time it takes to get to the closest water source only for

households that collect water from nature. The estimation results summarised in Table 3 are con-
sistent with such an effect: Overall and for households who mainly derive their water from a tap or
well, there is no statistically significant effect on the time to water from WBD Potential. However,
in column 4 we see that the effect of WBD Potential reduces the time to water by 68 minutes for
households who obtain their water from nature, and the coefficient is statistically significant. This
suggests that WBD Potential increases stagnant water share to the extent that households notice
this when they collect water.

Table 3
Time to water by water source

(1) (2) (3) (4)

Dependent: Time to water (minutes)

All Tap Well Nature

WBD Potential -4.967 -37.56 13.25 -68.38**
(23.80) (33.73) (34.46) (28.98)

Mean DV 40 33 42 49
Obs. 13,546 3,479 4,617 2,514
Clusters 241 155 202 176

Note: Standard errors parentheses clustered on DHS grid-cell level. All estimations use calendar month, grid cell
and wave fixed effects. * p<0.01 ** p<0.05 *** p<0.1. WBD Potential is the average per cent share of the area
covered in stagnant water the two weeks prior to the date of survey. Each column represents a DiD estimation with a
different subsample. The first column includes the full sample. We then divide the sample by which source of water
the household states: Piped or tap water (2), from any type of well (3), from nature i.e. a river, dam, lake, stream,
canal, pond (4). Individual level controls include birth order, multiple birth, gender, age, mother’s age, total fertility of
mother, toilet type.’ Sum of past two weeks precipitation per village/cluster also included.

18



5.2 Heterogeneity by sanitation quality

Having more empirical support for how WBD Potential increases the probability of contracting
waterborne diseases, we next return to how WASH practices can worsen or mitigate the spread of
waterborne diseases. Existing literature both from the economic and microbiological field empha-
sise the importance of the faecal-oral route in spreading waterborne diseases, and the estimated
effects of WBD Potential on diarrhoea illustrate how households with access to high-quality sani-
tation are not negatively impacted by higher risk of waterborne diseases.

Based on the UN Sanitation ladder we categorise household toilet types into four categories: No
facilities, Unimproved sanitation, Shared facilities, Improved sanitation (Kvarnstrm et al., 2011).19

We estimate the effect of WBD Potential on diarrhoea in one estimation, interacting WBD Potential
with each category of the sanitation ladder, letting the lowest rung of sanitation – no facilities and
open defecation – be the baseline. As in previous analyses of WASH practices, toilet types are
not randomly allocated to the household. However, given the existing evidence on the importance
of the faecal-oral channel in spreading waterborne diseases, and our estimated results on the link
between WBD Potential and diarrhoea, we expect a direct link between sanitation and waterborne
diseases. Furthermore, we are mostly interested in the interaction effect between sanitation quality
and time-varying exposure to waterborne disease, which is arguably a more exogenous measure
than sanitation quality alone.

The estimation results are summarised in Figure 4. Since both the existing literature and our
previous results suggest that the WASH practices channel differ by urban and rural contexts, we also
divide the sample by whether the households were defined as urban or rural. As expected, we see
that WBD Potential increases the probability of the child having had diarrhoea recently for children
living in both urban and rural areas, although the effect is both larger and more precisely estimated
for urban areas. The direct effect of the sanitation ladder on diarrhoea is precisely estimated to
be close to zero for all types of toilets. In contrast, we estimate negative effects for all but one
of the three interaction terms between WBD Potential and each rung on the sanitation ladder. For
the full sample, it is only households on the highest rung of the ladder where we can precisely
estimate a mitigation effect of WASH practices from WBD Potential. The coefficient suggests that
households who have these sanitation facilities can completely offset the increased risk from WBD
Potential. This is consistent with existing evidence on the link between sanitation and diarrhoea,
which suggests that not any sanitation but mainly high-quality facilities are important to stop the
faecal-oral channel of the spread of waterborne diseases (Troeger et al., 2018; Magana-Arachchi
and Wanigatunge, 2020).

Furthermore, we see that the main negative effect of WBD Potential and the mitigation with
improved sanitation originate from urban areas, which is consistent with observational literature
and historical cases. The large heterogeneity between wards and households with higher and lower
types of sanitation also provides an explanation for why only analysing the urban sample yields an

19To better understand the differences between these categories, Figure D.1 in Appendix D illustrates some exam-
ples.
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Figure 4
UN Sanitation ladder: Effect of WBD Potential on diarrhoea

Note: The three subgraphs represent separate triple-difference estimations of our main treatment, WBD Potential,
interacted with sanitation ladder and the effect on the probability the child has had diarrhoea the past two weeks. The
sanitation ladder is a categorical variable representing four types of sanitation facilities: No facilities, Unimproved
sanitation, Shared facilities, Improved sanitation. Here, the baseline is households with the first sanitation ladder
category: No facilities. The left subgraph presents the results using the whole sample of DHS children, while the
remaining two divide the sample by whether the household lives in an urban or rural area (whether the DHS cluster is
classified as urban or rural). See Figure D.1 for more explanation of the sanitation categories.

imprecisely estimated effect, since there are large heterogeneities. For urban wards, we also see
that the step from no facilities to ’unimproved sanitation’ also contributes to mitigating the negative
effect of WBD Potential, but less so than the high-quality facilities. Interestingly, the effect of the
third category, shared facilities, is estimated with the most imprecision. This may reflect that shared
facilities may be a poor indicator of better sanitation as there is large heterogeneity in how well they
meet the sanitation needs of households (Magana-Arachchi and Wanigatunge, 2020). Indeed, we
find that sharing a toilet with other households increases the risk of contracting WBD when WBD
potential is high, which is reported in Table D.2.

5.3 Effects of waterborne disease potential on test scores

We next present our main results, the effect of WBD Potential on learning as revealed by standard-
ised test scores. As discussed in Section 4.2, in our main specification WBD Potential is the share
of ward area covered by stagnant water, given as the average in the two weeks preceding the survey
and the test of children. Test scores are standardised averages of the child’s score in English, Maths
and Swahili.
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Table 4
Effect of WBD Potential on test scores

(1) (2) (3) (4) (5) (6)
Dependent: Test score (std)

WBD potential -1.390*** -1.254*** -0.934*** -0.660** -0.647** -0.742**
(0.280) (0.221) (0.334) (0.324) (0.319) (0.315)

Obs. 368,446 368,446 368,444 368,444 368,444 368,444
Clusters 3,844 3,844 3,842 3,842 3,842 3,842
Covs X X
Ward FE X X X X
Wave FE X X X
Month FE X X

Note: Results is the effect of WBD Potential on test scores. Standard errors in parentheses clustered on ward. *
p<0.01 ** p<0.05 *** p<0.1. WBD Potential is the average share of ward covered in stagnant water in the two weeks
preceding the date of the survey. Covariates include child’s gender and age, and mother’s age and secondary education,
a wealth index, local past two weeks of ward precipitation. Ward is the treatment unit of observation. Wave is the year
of the survey and waves included are 2011, 2013, 2014, 2015 and 2017. Month is the calendar month of treatment.

Table 4 displays the estimates of the effect of WBD Potential on test scores. We successively
add more controls and fixed effects to an initial parsimonious specification. Throughout columns 1-
6, all estimates are negative and statistically significant. In column 1, we report a pooled regression
with no controls and the estimated coefficient implies that when WBD Potential is 10%, children’s
test scores are reduced by 0.14 standard deviations. In column 2 we add household-level controls,
and then through columns 3-5 add ward, wave and calendar month fixed effects. Both ward and
wave fixed effects reduce the coefficient size substantially, although calendar month does not affect
the coefficient much, suggesting the estimate is not very sensitive to seasonal variation. Column 6
is our preferred specification: We include household and individual covariates, ward fixed effects,
wave fixed effects and month fixed effects. The estimate implies that if WBD Potential is 10%,
student test scores are reduced by 0.074 standard deviations, which is equivalent to one standard
deviation increase in WBD Potential reducing test scores by 0.028 standard deviations. Compared
to the observational difference in column 1, this effect is reduced by almost half. This suggests
there are important time-invariant or ward-invariant unobservable characteristics which influence
how WBD Potential affects test scores.

We hypothesise that our results reflect a higher incidence of waterborne diseases among tested
children, which affects their capacity to learn. However, we cannot here distinguish between
whether the child performs worse because they have been absent from school, or they are ill or
just recovering from illness when they take the test and thus performing worse than they would
otherwise. In Section 6 we further explore how sensitive our results are to the time dimension of
the definition of WBD Potential.

For now, to motivate how we see the connection between WBD Potential and characteristics
of waterborne disease contagion, in Table E.2 in Appendix E. I we further divide the result by the
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long-run precipitation (measured as the mean annual precipitation in the years 1970-2000) of each
ward, motivated by the fact that overall wetter climates are both more susceptible to waterborne
disease, but also more familiar with outbreaks (and potentially how to prevent them) (Cann et al.,
2013). We find that the main effect is driven mainly by dry wards, where the effect is larger and
statistically significant. For rainy wards, the coefficient is not statistically different from zero but
imprecisely estimated.20

One of our contributions is the ability to capture the effect of waterborne disease potential in
the areas where stagnant water settles, as opposed to modelling the effect on outcomes from local
precipitation (as studied in e.g. ??Ide et al., 2021). In our main estimation we define and include a
variable Local Precipitation which is equal to the sum (in cm) of rain in the two weeks preceding
the survey date.21 However, local precipitation may drive the estimated effect nonetheless. To
address this concern we next run our main specification both with and without WBD Potential and
local precipitation to estimate how both variables affect the children’s test scores.

Table 5 summarises the result of this exercise. Panel A displays the correlation between precipi-
tation and WBD Potential. While the coefficient is statistically significant, the contribution to WBD
Potential is small: 1 cm of rainfall contributes 0.001 to the share of WBD Potential; approximately
one per cent. This is reassuring, as we have intended to model the emergence of stagnant water
pools as a separate phenomenon from precipitation, and we expect a large part of the formation
of water pools to originate from non-local precipitation. Panel B and C run WBD Potential and
precipitation as separate explanatory variables on test scores, and the last panel repeats our main
specification from column 6 in Table 4. “Local Precipitation” as an explanatory variable is statisti-
cally significant and has a small, but positive effect on test scores. Rainfall may affect child learning
in many different ways. For example, in areas where agriculture is rainfed, which it typically is in
Tanzania, an increase in rain may lead to more agricultural production, which could increase the
demand for child labour or improve nutrition with opposing effects on learning (??). In our short-
term setting, we think it is unlikely either channel dominates the effect of WBD Potential on test
scores. We are thus reassured that our results are driven by WBD Potential and not local rainfall,
however, we include it as a control variable throughout our analyses.

5.4 Heterogeneity analysis: Mitigation with water and sanitation practices

To better understand to what extent the effect on test scores is driven by WASH practices we next
run an interaction of our WBD Potential measure with whether the household has a toilet (as de-
scribed by Equation (4)). In contrast to DHS, the Uwezo surveys only include an indicator for
whether the household has a toilet and not what type, and so given the results in Figure 4 we would
expect relatively higher heterogeneity in the type of toilet which households have. These results
are presented in Panel A in Table 6.

20We further show in Table D.3 that the effect on diarrhoea is twice as large for dry gridcells and more precisely
estimated than rainy gridcells with DHS, consistent with the effect on test scores.

21The unit of this measure reflects that the mean precipitation is approximately 0.5 cm, and that we use two weeks
to mirror the two weeks we include in the measure of WBD Potential.
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Table 5
Correlation between local precipitation and WBD Potential

(1) (2) (3)
All Dry Rainy

Panel A. Dependent: WBD Potential

Local precipitation (cm) 0.00102** 0.00355** -0.000499*
(0.000413) (0.00172) (0.000261)

Mean precip (cm/2 weeks) 0.44 0.34 0.53
Obs. 7,240 3,648 3,588
Clusters 2,558 1,319 1,238

Panel B. Dependent: Test scores

WBD potential -0.716** -0.831** -0.0209
(0.314) (0.348) (0.734)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173

Panel C. Dependent: Test scores

Local precipitation (cm) 0.0310*** -0.0357 0.0401***
(0.0118) (0.0234) (0.0135)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173

Panel D. Dependent: Test scores

WBD potential -0.742** -0.812** -0.00542
(0.315) (0.349) (0.729)

Local precipitation (cm) 0.00318*** -0.00334 0.00401***
(0.00117) (0.00235) (0.00135)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173

Note: Standard errors parentheses clustered on ward. Dry ward if mean annual precipitation < 1000 mm, rainy ward
if ≥ 1000 mm. Wave, Calendar month and Ward fixed effects included in all estimations. * p<0.01 ** p<0.05 ***
p<0.1. WBD Potential is the two-week average share of area of ward covered in stagnant water, ∼(0,1). ’Local
precipitation’ is the sum of precipitation in mm the past two weeks, by ward and wave. Panel A runs only rain on the
share of test scores to provide a correlation measure between the two variables. Panel B displays the effect of stagnant
water on test scores, and panel C the effect of two-week precipitation on test scores. For completion, Panel D mirrors
the main specification. All estimations include individual covariates: Child’s gender and age, and mother’s age and
whether she has secondary education or above, and an index for household wealth.
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For the full sample, we estimate a negative effect: In households without a toilet, when WBD
Potential is 10% it decreases test scores by 0.15 standard deviations and the effect is highly statisti-
cally significant. The effects are similar for dry and rainy wards, although more precisely estimated
for dry wards. There is a positive effect on test scores of having a toilet, which is consistent with
wealthier households having a toilet also being able to invest more in the education of children. The
interaction term is the effect of WBD Potential for households with toilets. Only for rainy wards do
we find a precisely estimated effect: The coefficient is positive and two thirds that of the negative
effect for households with no toilet.

However, the toilet of the household may be a poor indicator to get a full picture of the impor-
tance of WASH practices. This is in part because there are large spillovers between your house and
your neighbour’s house in the spread of waterborne diseases (Magana-Arachchi and Wanigatunge,
2020; Duflo et al., 2015; Kremer et al., 2022), and also because having a toilet is endogenous to
the household’s preferences or capacity for sanitation which may affect children’s learning in other
ways. To address these points, for each household we construct an average of the share of house-
holds with a toilet in each village, leaving out the toilet status of the household itself from the mean.
We then perform the same estimation and summarise these results in Panel B in Table 6.

We estimate for households in villages with no toilets a similar effect of WBD Potential on test
scores as for households with no toilet. However, when splitting by rainy dry and rainy wards, a new
pattern emerges: For children who live in villages with a low number of village toilets 10% WBD
Potential lowers test scores by 0.54 standard deviations. This effect is diminished by households
living in villages with a higher share of toilets: The coefficient WBD Potential (10%) offset the
negative effect of test scores by 0.46 standard deviations relative to villages with no sanitation
if everyone in the village has a toilet (i.e. share=1), suggesting large marginal returns the more
households in a village have a toilet. In contrast, the interaction effect in dry wards is an order of
magnitude smaller and statistically insignificant, while the direct effect of the village toilet share
suggests if everyone in the village has a toilet, test scores are 0.29 standard deviations higher.

While your neighbours’ choice of having a toilet is plausibly more exogenous than your own
choice of a toilet, there are still important sources of endogeneity which could explain our results.
For instance, an individual might buy a toilet because their neighbour has one, and both the village
level and household level presence of toilets likely correlates heavily with wealth, so the channel
through which the toilet acts through WBD Potential could be due to e.g. a higher general degree of
economic development. While we cannot test this directly, one way to examine this wealth channel
is to split the sample by household wealth and analyse the interaction effect between household
wealth and WBD Potential on test scores. These results are summarised in Panel C. As expected,
children from wealthy households have higher test scores. In contrast to the results with toilets, the
interaction between WBD Potential and household wealth is small and statistically insignificant for
both dry and rainy wards, suggesting wealth does not directly affect how WBD Potential causes a
reduction in test scores. Additionally, the direct effect of household wealth on test scores is similar
across both types of wards. This suggests the wealth channel does not depend on whether the ward
has a drier or wetter climate, which is in stark contrast to estimations of sanitation. Thus, wealth
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Table 6
WBD Potential and test scores, mitigation with sanitation

Dependent: Test score (std)

All Dry wards Rainy wards

Panel A: Household toilet

WBD Potential -1.474*** -1.399*** -1.528*
(0.431) (0.460) (0.850)

HH toilet 0.105*** 0.122*** 0.0830***
(0.00906) (0.0127) (0.0127)

WBDP*HH Toilet 0.235 -0.0632 1.092***
(0.194) (0.221) (0.348)

Obs. 217,766 117,266 100,500
Clusters 3,090 1,594 1,496

Panel B: Village toilets

WBD Potential -1.403* -0.713 -5.393***
(0.745) (0.749) (1.917)

Vill toilet 0.218*** 0.288*** 0.0778
(0.0404) (0.0517) (0.0642)

WBDP*Vill Toilet 0.230 -0.665 4.555**
(0.747) (0.738) (1.952)

Share has toilet 0.80 0.75 0.85
Obs. 217,766 117,266 100,500
Clusters 3,090 1,594 1,496

Panel C: Household wealth

WBD Potential -1.465** -1.851*** -0.320
(0.598) (0.679) (1.930)

HH wealth 0.0872*** 0.0832*** 0.0903***
(0.00263) (0.00407) (0.00336)

WBDP*HH Wealth -0.0383 -0.0293 0.0148
(0.0688) (0.0742) (0.146)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173

Note: Standard errors parentheses clustered on ward. WBD Potential is the two-week average share of area of the ward
covered in stagnant water, ∼(0,1). * p<0.01 ** p<0.05 *** p<0.1. HH toilet is an indicator of whether household
has a toilet. Vill toilet is the share of households within the household’s village that has a toilet (excluding theirs). HH
Wealth is an index combining household assets, excluding toilets. Dry ward if long run precipitation <1000 mm per
year on average, Rainy ward if≥ 1000 mm. Wave, Calendar month and Ward fixed effects, Past two-week sum of local
precipitation included in all estimations.
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does not seem to explain the majority of the effect estimated from toilets and these results are
indicative of the importance of good WASH practices to stem the costs of waterborne diseases.

5.5 Additional heterogeneity analysis

To better understand the effect we estimate, we next conduct a heterogeneity analysis both by key
individual characteristics and by type of ward.

Child age and gender: Existing literature shows that flooding affects children’s outcomes dif-
ferently for boys and girls (?). As summarised by Figure E.1 we estimate negative effects overall
and the coefficients of WBD Potential on test scores for boys and girls are never close to statis-
tically significantly different from one another. Regarding age, we find a U-shaped pattern of the
estimated effects of WBD Potential on test scores with respect to the child’s age, where the main
negative effect is driven by 9-14 year-olds. These results are summarised in Figure E.2. While
we would suspect that younger children are more vulnerable to waterborne disease, there is also
less variation in test scores for children in the ages 7-8 since most of the observations in these age
groups tend to cluster around the lowest level of capabilities. However, at ages 9 and older more
children learn higher-level skills such as multiplication and division which may enable us to better
observe how children fall behind relative to their peers due to exposure to waterborne disease.

Urban and rural dimension: We next analyse if there are differences between urban and rural
areas since most existing literature find that there are more severe disease effects in urban areas that
are densely populated (Alsan and Goldin, 2019; Troeger et al., 2018), and given the results on the
sanitation ladder and urban-rural heterogeneity on diarrhoea in Figure 4. We summarise our results
in Figure E.3, where we separately estimate the effect of WBD Potential on test scores for rural and
urban wards. Within each subplot, we also split the estimate by dry and rainy areas. The effect on
test scores is more precisely estimated for rural wards, but the estimates are consistently negative
and not statistically different from one another. This can potentially suggest that there is a higher
probability of contracting waterborne diseases in urban areas, but when children get sick in rural
areas they get sicker, potentially related to either the severity of contamination or the capacity to
treat disease.

Distance to coast: Relatedly, we also analyse if there is important variation across wards by
distance to the closest coast, whether it is the sea or Lake Victoria, as evidenced by documented
disease outbreaks. We divide wards into quartiles ranging from 0-250 km, 250-525 km, 525-711
km and 711-1022 km away from the coast. The results are summarised in Figure E.4 in Appendix E.
I. We find that all estimated coefficients are negative, but the effect of WBD Potential on test scores
appears driven by wards close to the coast, where the effect is the largest, while the effect of WBD
Potential is the most imprecisely estimated for areas far from the coast. This is consistent with em-
pirical evidence, showing that for instance cholera is more common in coastal than inland regions
across Sub-Saharan Africa (Rebaudet et al., 2013), and especially in Tanzania (Lugomela et al.,
2014). We find these results plausible for two reasons: First, since coastal regions are by definition
furthest downstream, stagnant water in these regions is likely more contaminated than water further
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inland since it will have passed through more potential sources of contamination before stagnating.
Second, coastal regions in Tanzania tend to be more flat and conducive to exposure to stagnant wa-
ter than inland areas, which are generally more rugged. Third, wards close to the coast are typically
more humid and also more densely populated, and thus more conducive to harbouring waterborne
pathogens.

6 Robustness checks

Non-linearities in treatment: In our main specification we estimate the effect of a continuous share
of WBD Potential (which can take any value between zero and one) and estimate this on test
scores. This assumes a linear relationship between WBD Potential and test scores. In this section,
we explore how strong an assumption that imposes. We start by first redefining WBD Potential to
be a binary treatment by creating a dummy which is equal to one for the wards in waves where
WBD Potential is greater than 5% (see Table 1). Including this in our main specification instead of
our continuous variable, we again estimate the effect on test scores. As summarised in Table E.3 in
Appendix E. II we find that treatment leads to -0.10 standard deviations lower thresholds.22 This
is larger but comparable to our main result of -0.7 standard deviations, consistent with the fact that
5% is a relatively severe or rare shock.

Next, we estimate the effect on our main WBD Potential measure but also include a squared
term. As displayed in Table E.4, the linear term of the effect of WBD Potential on test scores
increases from .74 standard deviations in our main specification to now being -1.33, and still sta-
tistically significant. The coefficient for the squared term, although it is statistically insignificant,
is large and positive (1.52), which implies decreasing marginal effects of WBD Potential on test
scores. While this may seem counter-intuitive, since more stagnant water would lead to a greater
probability of a disease outbreak which could potentially create positive feedback loops, attenua-
tion happens mostly for treatment values near 1, indicating a fully water-covered ward, which never
occurs in practice. One would also expect that, as the share of stagnant water grows, contaminated
surface water becomes more diluted, thereby decreasing the probability of an outbreak. Several
studies have shown that the probability of outbreaks of diarrhoea due to heavy rainfall is typically
higher following a dry period than a wet period, which would generate a smaller but less contam-
inated amount of surface water, suggesting that rainfall dynamics affect not only the quantity but
also the quality of surface water (Levy et al., 2016).

To further investigate how the intensity of our treatment affects children’s test scores, we create
additional dummies of WBD Potential and include these dummies in the same estimation (WBD
Potential 1-5%, 5-10%, 10-15%, 15-20% and above 20%). These results are presented in Fig-
ure E.5. We find no statistically significant effect of WBD Potential for values less than 5%. Re-
assuringly, there is a clear negative trend with an increase in the treatment magnitude, and the co-
efficients are negative for all other binned values of WBD Potential, although only statistically sig-

22All results in this section can be found in Appendix E. II.
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nificant for WBD Potential between 10-20%. Imprecision increases when WBD Potential ≥15%,
consistent with these being rare events (see e.g. Figure C.1)

Randomisation test: We conduct a randomisation inference test to evaluate to what extent our
statistically significant findings could be based on spurious results (Hsiang et al., 2014; Young,
2019). We run our main specification from Equation (3), but randomise the treatment variable
within wards. The expectation is that we should find no effect on test scores with reshuffled treat-
ment. We run these placebo regressions 500 times and summarise the results in Figure E.6 Ap-
pendix E. II. We find that no placebo regression replicates the statistically significant and negative
effect on test scores we find in our main estimation and that the distribution is centred around zero
in a bell-shaped curve.

Alternative estimator robust to heterogeneous treatment effects: As we rely on variation in treat-
ment timing there is a danger that our estimates are biased due to heterogeneous treatment effects
(Goodman-Bacon, 2021). In our setting, the likeliest source of such heterogeneity is that children
exposed to higher waterborne disease potential are sicker and more vulnerable, putting them on a
permanently more negative trajectory compared to non-treated children. If this trajectory persists
and affects children across waves (i.e. years) a comparison against such wards would attenuate our
effect to zero. To address this issue, we implement the estimator developed by de Chaisemartin
and D’Haultfoeuille (2018) (denoted DCDH). From the potential other estimators we implement
this estimator since our setting is non-staggered, in that wards can go from treated to untreated
and back (de Chaisemartin and D’Haultfoeuille, 2022). Moreover, since the correct estimators for
continuous treatments where treatment is non-staggered are not well-established as of yet, we re-
define our treatment, WBD Potential, to a binary variable. This implies a ward becomes treated if
the share of the stagnant water of the ward area exceeds 5%. Figure E.7 summarises these results.
The estimate of the effect of WBD Potential on test scores with two-way fixed effects (TWFE)
is -0.095 standard deviations while the estimate with the DHDC estimator is -0.104 and it is not
statistically significant at the 95th level, although it is relatively precisely estimated. Since standard
errors are bootstrapped for the DHDC estimator, we also provide a comparison to the TWFE with
bootstrapped standard errors instead of clustered as in our main specification. The similarity in the
estimates by estimators suggests heterogeneous treatment effects are not important confounders in
our results.

WBD Potential across time: In our main specification we define WBD Potential to be the av-
erage share of stagnant water which covers the ward area over the past two weeks. In Figure E.8
we vary the number of weeks included in this average and re-estimate our main result, the effect
of WBD Potential on test scores. We find that the coefficient of the treatment is remarkably stable
across weeks included in the treatment, and statistically significant throughout. To better under-
stand which weeks drive this result, we next compute a treatment variable which measures the
stagnant water share by week, discretely. That is, in one estimation we only include the stagnant
water share in the third week since the date of the survey, and in the next, we only include the
stagnant water share in the fourth week since the date of the survey. The estimation results are
summarised in Figure E.9. Here we see that there is a large initial effect which is measured with
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the most precision in week one, but the statistically significant effect remains up to eight weeks.
This means there is likely a high serial correlation between these definitions of our treatment since
the same pool of water can linger across weeks. Together, the results suggest that our estimated
effect on test scores is the strongest for the weeks closer to the survey date but persists for the period
observed. Importantly, we also see that the effect is measured also in the week immediately follow-
ing the date of the survey, which is consistent with studies on outbreaks and the microbiological
literature suggesting waterborne pathogens can contaminate and spread quickly.

Given that the results show high autocorrelation of WBD Potential over time, one concern is
that our model captures a phenomenon in the future, which we then estimate effects for due to the
correlation with past events. Such would be the case if past WBD Potential captures that children
expect more favourable environmental conditions or events in the future in a way which affects test
scores. If this is the case, future WBD Potential (in terms of the date children are surveyed) should
better predict the change in test scores than past events. However, due to the high correlation (95%)
between weeks, models including weekly WBD Potential in the same estimation are likely to in-
duce problems associated with multicollinearity. Figure E.10 displays two attempts to disentangle
the potential role of future WBD Potential while reducing the influence of multicollinearity: We
measure the change in WBD Potential over time or coarsely bin WBD Potential across time. These
results are measured with less precision than our main results, but past WBD Potential better ex-
plains the reduction in test scores than future WBD Potential (see Appendix E. II for more detailed
explanation.)

Comparison with GWS data: By hydrological standards we use a parsimonious algorithm to
simulate the emergence and disappearance of stagnant water over time, both for transparency and
computational reasons. However, by combining flood risk data on 30-by-30-metre cells in Tanzania
from a combination of satellite data on surface water (GWS) and external hydrological model data
we can generate a treatment measure based on a more complex hydrological model currently com-
putationally infeasible to us. These results and a comparison to our main specification are provided
in Table E.5. In contrast to our simulations, no estimates using the GWS data are statistically signif-
icant, which could be due to several reasons (see discussion in Appendix A. III). Correspondingly,
the correlation between the measures is typically positive but low, although where the correlation
is the highest (.52), for urban wards, we estimate negative effects of WBD Potential on test scores.

7 Concluding remarks

In this paper we have estimated the effect of WBD Potential, an environmentally determined risk
factor of waterborne diseases, in Tanzania across a small geographical unit: Wards. We do this
by developing a novel hydrological model where we simulate the share of stagnant water in each
ward relative to a known date of testing of children, which we have called WBD Potential. We
hypothesise that the environmental risk factors that cause stagnant water pools to grow encourage
a host of waterborne pathogens to proliferate: Contact with these pathogens causes a local increase
in waterborne diseases which affects children’s health and capacity to learn.
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Applying a DiD specification to extract the causal effect of waterborne diseases through WBD
Potential we first validate our interpretation of WBD Potential as affecting the main symptom of
waterborne diseases – diarrhoea – while having no effects on other disease symptoms or long-run
outcomes. In our main specification, we find that children who live in wards where stagnant water
covers 10% of the ward area (WBD Potential=0.1) have 0.074 lower standard deviation mean test
scores. To compare against another environmental shock, Hyland and Russ (2019) estimate that
early childhood droughts reduce the years of educational attainment by 0.437 years, or 0.1 standard
deviations of years of schooling for children in Sub-Saharan Africa. In contrast to their long-run
results, our main estimate measures the effect of a contemporaneous shock directly on student
performance and learning; students’ test scores. Our estimated short-term effect is smaller than
they estimate on years of schooling but in line with their findings that environmental factors have
significant effects on children’s education.

We also analyse how WASH practices interact with WBD Potential and its effects. We find
that the results on test scores are stronger in dry wards, while for rainy and urban wards WASH
practices are important co-determinants of the effect on both health – in the incidence of diarrhoea
– and test scores. This is consistent with both historical events and documented disease outbreaks,
where sanitation is key in combatting waterborne diseases when there is high population density
and in general wetter climate.

We generate two key insights. Firstly, not only the household’s own sanitation facilities matter,
but there are important spillovers within a village such that the sanitation practices in the whole vil-
lage is at least as important as the household, implying that policies to address sanitation practices
may also want to address the communities’ attitudes and capacity for improved WASH practices
as a whole. Secondly, that it is in particular high-quality facilities that offset the increased risk of
waterborne diseases, consistent with null results from RCT’s that have adopted a piecemeal ap-
proach. Thus, WASH programs in Tanzania and other developing countries that battle reoccurring
outbreaks of waterborne disease will likely have to invest in higher-quality (and more expensive)
toilet- and sanitation facilities to reduce the incidence of waterborne diseases to that of the devel-
oped world. One way to make this more cost-efficient is to target areas where WBD Potential is
likelier to be higher or more volatile.

While large-scale investment in WASH infrastructure is likely necessary, albeit expensive, in
order to improve the local disease environment, an intermediate and potentially cost-efficient step in
reducing the worst consequences of an outbreak could be improved targeting of medical treatment
to areas at higher risk of outbreaks. To reiterate, we find that one standard deviation increase in
WBD Potential reduces test scores by 0.03 standard deviations. This effect size is equivalent to
the effect on test scores estimated by Mbiti et al. (2019) who over a two-year period incentivise
teachers in Tanzania with 5,000 TZS (3 USD) per student’s passing grade (although their estimate
is not statistically significant). The cost of this program can be compared to diarrhoea rehydration
treatment which costs only 0.56 USD. Despite this high cost-effectiveness, only about one in six
children receive the treatment in rural Tanzania. We thus leave it to future research to explore
demand and supply-side policies to increase children’s access to treatment.
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The burden of waterborne disease on both children’s health and learning which we document
in this paper imply that policies to combat waterborne diseases should also take climatic risk into
account. Our results are especially concerning as access to water will be even more strained with
the onset of more severe climate change, as water shortage may increase the propensity and need
of communities to draw water from unsafe sources. The important interaction between waterborne
diseases and sanitation provides hopeful evidence for how the costs of waterborne diseases can be
combated with sanitation policies if targeted to vulnerable areas.

31



References
Alsan, Marcella, and Claudia Goldin. 2019. “Watersheds in Child Mortality: The Role of Ef-

fective Water and Sewerage Infrastructure, 18801920.” https://doi.org/10.1086/700766 127 586.
10.1086/700766.

Bietenbeck, Jan, Sanna Ericsson, and Fredrick M. Wamalwa. 2019. “Preschool attendance,
schooling, and cognitive skills in East Africa.” Economics of Education Review 73 101909.
https://doi.org/10.1016/j.econedurev.2019.101909.

Briceño, Bertha, Aidan Coville, Paul Gertler, and Sebastian Martinez. 2017. “Are there syner-
gies from combining hygiene and sanitation promotion campaigns: evidence from a large-scale
cluster-randomized trial in rural Tanzania.” PloS one 12 (11): e0186228.

Cann, KF, D Rh Thomas, RL Salmon, AP Wyn-Jones, and D Kay. 2013. “Extreme water-related
weather events and waterborne disease.” Epidemiology & Infection 141 (4): 671–686.

Cattan, Sarah, Daniel A Kamhofer, Martin Karlsson, and Therese Nilsson. 2023. “The Long-
Term Effects of Student Absence: Evidence from Sweden.” The Economic Journal 127.

Chae, Sae Rom, Haji Lukupulo, Sunkyung Kim et al. 2022. “An Assessment of Household
Knowledge and Practices during a Cholera Epidemic Dar es Salaam, Tanzania, 2016.” The Amer-
ican Journal of Tropical Medicine and Hygiene 107 766–772. 10.4269/AJTMH.21-0597.

de Chaisemartin, Clment, and Xavier D’Haultfoeuille. 2018. “Fuzzy differences-in-
differences.” Review of Economic Studies 85 999–1028. 10.1093/restud/rdx049.

de Chaisemartin, Clment, and Xavier D’Haultfoeuille. 2022. “Difference-in-differences estima-
tors of intertemporal treatment effects.” http://www.nber.org/papers/w29873.

Cutler, David, and Grant Miller. 2005. “The role of public health improvements in health ad-
vances: The twentieth-century United States.” Demography 42 1–22. 10.1353/DEM.2005.0002/
METRICS.

Dazzi, Susanna, Iuliia Shustikova, Alessio Domeneghetti, Attilio Castellarin, and Renato Va-
condio. 2021. “Comparison of two modelling strategies for 2D large-scale flood simulations.”
Environmental Modelling & Software 146 105225.

Duflo, Esther, Michael Greenstone, Raymond Guiteras, and Thomas Clasen. 2015. “Toilets
Can Work: Short and Medium Run Health Impacts of Addressing Complementarities and Exter-
nalities in Water and Sanitation.” 10.3386/W21521.

Eisenberg, Marisa C, Suzanne L Robertson, and Joseph H Tien. 2013. “Identifiability and
estimation of multiple transmission pathways in cholera and waterborne disease.” Journal of
theoretical biology 324 84–102.

Falter, Daniela, NV Dung, Sergiy Vorogushyn et al. 2016. “Continuous, large-scale simulation
model for flood risk assessments: proof-of-concept.” Journal of Flood Risk Management 9 (1):
3–21.

Falter, Daniela, Sergiy Vorogushyn, Julien Lhomme, Heiko Apel, Ben Gouldby, and Bruno
Merz. 2013. “Hydraulic model evaluation for large-scale flood risk assessments.”

Farr, Tom G, Paul A Rosen, Edward Caro et al. 2007. “The shuttle radar topography mission.”
Reviews of geophysics 45 (2): .

Fick, Stephen E, and Robert J Hijmans. 2017. “WorldClim 2: new 1-km spatial resolution cli-
mate surfaces for global land areas.” International journal of climatology 37 (12): 4302–4315.

Goodman-Bacon, Andrew. 2021. “Difference-in-differences with variation in treatment timing.”
Journal of Econometrics 225 254–277. 10.1016/j.jeconom.2021.03.014.

Hersbach, H, B Bell, P Berrisford et al. 2018. “ERA5 hourly data on single levels from 1979 to
present.” Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 10.

Hsiang, Solomon M, Amir S Jina, We Thank et al. 2014. “THE CAUSAL EFFECT OF EN-
VIRONMENTAL CATASTROPHE ON LONG-RUN ECONOMIC GROWTH: EVIDENCE

32

http://dx.doi.org/10.1086/700766
http://dx.doi.org/https://doi.org/10.1016/j.econedurev.2019.101909
http://dx.doi.org/https://doi.org/10.1016/j.econedurev.2019.101909
http://dx.doi.org/10.4269/AJTMH.21-0597
http://dx.doi.org/10.1093/restud/rdx049
http://www.nber.org/papers/w29873
http://dx.doi.org/10.1353/DEM.2005.0002/METRICS
http://dx.doi.org/10.1353/DEM.2005.0002/METRICS
http://dx.doi.org/10.3386/W21521
http://dx.doi.org/10.1016/j.jeconom.2021.03.014


FROM 6,700 CYCLONES.” http://www.nber.org/papers/w20352.
Hyland, Marie, and Jason Russ. 2019. “Water as destiny The long-term impacts of drought in

sub-Saharan Africa.” World Development 115 30–45. 10.1016/J.WORLDDEV.2018.11.002.
Ide, Tobias, Anders Kristensen, and Henrikas Bartuseviius. 2021. “First comes the river, then

comes the conflict? A qualitative comparative analysis of flood-related political unrest.” Journal
of Peace Research 58 83–97. 10.1177/0022343320966783.

Ilomo, Authors Onesto, and Bernard Mlavi. 2016. “The Availability of Teaching and Learning
Facilities and Their Effects on Academic Performance in Ward Secondary Schools in Muheza-
Tanzania.” International Journal of Education and Research 4, www.ijern.com.
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A Geographic data and modelling stagnant water

A. I Data sources

Table A.1
Data sources used in the WBD potential algorithm

Input category Dataset Resolution and accuracy of input
data

Topography Digital Elevation Model from the
Shuttle Radar Topography Mission

30 m horizontal resolution, aggre-
gated into 90 m. 6 m vertical accu-
racy.

Rainfall ERA5-reanalysis data for Precipita-
tion

27 km horizontal resolution. 1 hour
time resolution.

Evaporation ERA5-reanalysis data for Potential
Evapotranspiration

27 km horizontal resolution. 1 hour
time resolution.

Soil data ISRIC 2.0 global soil database 1 km horizontal resolution.

We use four different categories of data for our algorithm to compute the WBD potential, as
summarised in Figure 1 and Table A.1, which are: Topographical data, rainfall data, evaporation
data and soil infiltration data. See Farr et al. (2007); Hersbach et al. (2018); Hersbach et al. (2018);
Poggio et al. (2021).

We use topographical data from the Shuttle Radar Topography Mission (Farr et al., 2007).
This is one of the most commonly used high-resolution global datasets on topography in scientific
research, and is assembled by satellite data gathered in February 2000. Since we are not aiming
to resolve detailed features in urban areas but rather large-scale runoff processes, we believe that
this data is representative of the topography in Tanzania for the time period of our survey data.
The resolution for each grid cell is approximately 30 m, with a vertical accuracy of around 6 m.
Since we run our algorithm for the whole country, we aggregate this data to a 90 m resolution
in order to make the computation feasible. This still leaves us with more than 120 million grid
cells for the area of Tanzania and likely provides a detailed enough horizontal resolution for the
large-scale analysis we run. Recent evaluations of large-scale 2D hydrodynamic simulations for
several European rivers show that resulting ooded area and water level are insensitive to variations
in spatial resolution once it is finer than 100 m (Dazzi et al., 2021; Falter et al., 2013, 2016). The
topography is used to determine the flow direction of each cell during the simulation, which may
change dynamically as a function of the water depth over the cell, and to determine the water depth
across cells at each point in time.

For rainfall input, we use data from ERA5, which provides a global gridded dataset with hourly
estimates of a multitude of atmospheric variables, including precipitation (Hersbach et al., 2018).
We use the reanalysis data, which is based on an ensemble of forecast models which take both
satellite data and local weather station data into account and updates predicted atmospheric vari-
ables at a 1-hour resolution. The spatial resolution is 0.25 decimal degrees, which approximately
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translates to 27 km at the equator. This gives us close to 1400 data points for Tanzania, which
is vastly greater than the number of rainfall stations in the country. Gridded rainfall data derived
from satellite observations is especially useful in developing countries, where there is often a rel-
ative scarcity and lower quality of data from rainfall gauges. Moreover, rainfall stations may vary
systematically with local development, which means that measurement error may become system-
atically correlated with the local level of development. The advantage of using satellite-adjusted
data is that measurement error is arguably orthogonal to local development. With regards to hy-
drological simulations, rainfall is especially important since it tends to be one of the main sources
of uncertainty. Fortunately, a recent study investigating 22 global gridded rainfall datasets system-
atically found that ERA5 reanalysis data provided one of the best calibration scores and lowest
inaccuracies when used operationally in hydrological models (?). The rainfall data provides all
the input of water in the model, and thus drives the resulting surface runoff, depending on local
infiltration rates, topography and evaporation.

For evaporation we also rely on the ERA5 reanalysis data, for the same reasons given above
(Hersbach et al., 2018). This also lends consistency to the rainfall data, since these two datasets are
produced jointly and dependent on each other. Specifically, we use the potential evapotranspiration
rate which is applied to cells with a water depth greater than zero.

Lastly, for soil infiltration, we use soil data from the ISRIC 2.0 global soil database (Poggio
et al., 2021). This is a state-of-the-art high resolution soil dataset which provides a resolution as
fine as 1 km and provides a distribution of the content of clay, silt and sand at different soil depths.
We depth-integrate this data and use the distribution of soils in each cell to classify each cell as a
soil type according to the USDA classification system. From this classification we can then derive
soil parameters such as saturated infiltration capacity and soil porosity. The current version of our
algorithm uses a simplified infiltration measure by applying only the saturated conductivity of the
soil to account for losses due to soil infiltration. Due to the high resolution of the topography we
do not apply any slope-adjusted infiltration rates as some low-resolution hydrological models do.
Instead a greater slope will translate into a faster runoff process, which will reduce the resulting
infiltration. Future iterations of this algorithm could potentially be improved by applying a full soil
infiltration mode commonly use in state-of-the-art hydrological models, such as the Green-Ampt
method, and also by simulating the groundwater storage layer as a separate entity able to refeed the
infiltrated water as groundwater seepage into rivers and streams, which as of current is not handled
by the algorithm.

A. II Algorithm for WBD Potential

The purpose of the algorithm is to model the time evolution of stagnant water surfaces over time,
which we wish to aggregate to a weekly-level treatment measure, using a combination of hydro-
logical and hydraulic calculations. For this purpose, we run the model with 5-minute temporal
resolution. Before the model is run, input data are processed to cover the same extent and trans-
formed to the same coordinate system. Below is a schematic explaining how the algorithm, which
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is implemented in Python, works.

1. Initialise and run the model starting > 3 months before the first interview date until the last
interview date.

(a) Initalise a new day d

(b) For every 5-minute timestep t ∈ {1, ...,288} in each day:

i. Accumulate the last 5 minutes of precipitation on all grid cells

ii. For each cell i, j identify the immediately neighboring cell with the lowest current
water level, where water level is the sum of the current water depth and elevation
of the cell.

iii. If this cell has a lower water level than cell i, j, then transfer the 5-minute accumu-
lated volumetric flow V from cell i, j to the receiving cell, otherwise do nothing.
The volumetric flow rate V = f (∆h) is an increasing function in the difference in
energy levels (∆h) between the emitting and receiving cells, based on the Manning
formula for open channel flow.

iv. Finally, remove the 5-minute accumulated volumetric infiltration rate from cell i, j:
min(di, j, f (K)) where di, j is the water depth of cell i, j and Ks is a soil infiltration
parameter. The current version, f (K) = Ks where Ks is the saturated hydraulic
conductivity of soil s in cell i, j.

(c) At the last time step of each day, t = 288, subtract the volumetric actual evaporation
rate E from all cells where E = min(di, j,t ,Ed) where Ei, j,d is the potential evaporation
rate in cell i, j for day d.

2. Export water depth for all cells to daily georeferenced arrays, which are then aggregated into
weekly-level treatment measures at the ward-level using ArcGIS and the ArcPy package for
Python.

A. III Validation with satellite data

Optimally, one would want to have a measure of the actual surface water. One such way could
be through satellite imagery. There now exists a global database of surface water down to a 30 m
resolution, released by the Joint Research Centre of the European Commission and spanning the
time period 1984-2021 (Pekel et al., 2016). One problem, however, is that data is only available
at the monthly level, which is too aggregated for the short-run effects we analyze, which is at the
weekly level. Moreover, with the temporally disaggregated data (at the month level) missing data
due to e.g. incomplete satellite coverage and cloud cover is common, at least for Tanzania. Lastly,
there is also the potential issue that observed surface water is endogenous to human behaviour in
ways that correlate with our outcomes of interest. It could, for instance, be that areas where water
is cleared away faster have better access to functioning infrastructure and are more developed.
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By instead simulating surface water using static topography and using time variation in climate
variables, as we do in our baseline algorithm, we arguably get an exogenous source of variation in
surface water.

One way to get around the potential endogeneity issue and also deal with missing data is to use
the long-term occurrence data, which reports the percentage of months a cell was covered by surface
water (psw), and then use variation only in hydrological input (rainfall, infiltration, evaporation) to
predict whether a specific cell is covered by water. This method would rely on only simulating
variation in hydrology through the simulation of local runoff, and then to infer whether a given cell
is covered by water or not in that scenario.

Since our algorithm integrates both hydrological and hydraulic computation, one alternative,
in order to isolate hydrological variation, is to combine the surface water frequency data with an
external purely hydrological model. To this end, we use the GloFAS-ERA5 model, which builds
on ERA5 data similar to our algorithm, but is a much more advanced hydrological model with the
purpose to simulate river discharge at the local level (Harrigan et al., 2020). One advantage is that
it is calibrated and validated, and used operationally around the globe. The resolution of this model
is much coarser however, approximately 11 km, so cannot be used in itself to infer which cells
become covered by stagnant water. However, from long-term output by the model we can generate
a hydrological frequency distribution for each cell. We can then run the model at a daily timestep
and elicit the percentile value of the hydrological situation for each day (ph). Assuming that inland
surface water occurrence is mostly determined by the current hydrological situation, this implies
that a cell will be considered covered by water only if ph > 1− psw. For example, a cell that is
observed to be covered by water only 1 % of the time (psw = 0.01) would require a local river
discharge percentile value greater than or equal to 99 % (ph ≥ 0.99) to count as flooded, since 99 %
of the time, it should be “dry”. We use this as an alternative measure to validate the findings from
our baseline algorithm, as well as a robustness exercise, which we report in Table E.5.

In terms of correlation between the two treatment measures, it is consistently positive but low.
It is the lowest for rural areas (0.02) and highest for urban areas (0.52), where we also get the
most consistent estimates between the two methods (both yield negative effects on learning, albeit
insignificant). While it is reassuring that there is some degree of positive correlation, the fact
that it is generally low may imply that these methods are largely complementary to each other.
The satellite occurrence data is based on monthly observations, which means that it will fail to
capture areas that are only covered by water during short periods of time, such as a few days. Our
main algorithm, which is run with a time resolution in minutes but exported at the daily level, is
thus potentially able to capture more cells covered by stagnant water. Any additional area that
is identified by our algorithm but not the satellite data will thus reduce the correlation between
the two measures, which could be sensitive due to the frequency of zero-valued data (dry cells)
regardless of the method used, but this would mostly be a positive feature of our model rather
than an inaccuracy. In terms of the algorithm, there is a number of potential inaccuracies. The
most straightforward one is topography. We use 30 m resolution data and aggregate into 90 m
for computational feasibility, which is likely to further decrease the vertical accuracy. Evaluation
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of topography data from the SRTM tends to show substantially larger inaccuracy in rural than
urban areas, since urban areas by design tend to have less topographic variation, and thus be less
sensitive to measurement and aggregation error. The area flooded by water is likely sensitive to
variation in the topography, since a small change in slope would lead water to run off rather than
stagnate. A secondary, typically large source of uncertainty in any hydrological model, are soil-
water processes. Generally, runoff models work very well in urban areas, where infiltration is
small and most runoff is due to rainfall, whereas rural areas, resulting surface water will to a larger
degree be determined by soil composition, vegetation and groundwater depth, all which could be
sources of inaccuracies in our model. In terms of magnitudes, we find our algorithm produces an
average for the simulation periods of 1.3 %, whereas the satellite imagery generates a mean of 0.6
%. As argued before, this could be partly due to the fact that satellite imagery uses a monthly
resolution, so would likely capture a strictly smaller area of surface water than our algorithm, and
further that infiltration and runoff processes may be systematically underestimated by the algorithm.
Comparing urban areas only, where these inaccuracies should play a significantly smaller role, we
find that our hydrological model generates a mean of 1.4 % and the satellite data 0.9 %, which
hints at the effects of inaccuracies due to topographical and soil infiltration uncertainty. Hence, the
remaining systematic difference in magnitude may be driven by our ability to capture the short-term
variation in surface water in urban areas to a larger degree.

Since most of our results, from learning to health outcomes, seem largely driven by urban areas,
it is reassuring that the overlap of the methods is strongest for urban areas. This is consistent both
on the independent variable side, with surface runoff models showing less uncertainty in urban
areas, and on the dependent variable side, where urban areas have typically found to be at a greater
risk of waterborne disease outbreaks.

B Details on Waterborne Diseases

B. I Mechanisms for contagion and disease symptoms

Waterborne diseases are adverse health conditions caused by pathogens that are transmitted by the
intake of or contact with pathogen-polluted water, such as by the intake of harmful bacteria or
worms. These pathogens include bacteria, viruses and worms, and common diseases are cholera,
typhoid fever, and dysentery. Table B.1 summarises some of the most commonly occurring diseases
and symptoms, by type of pathogen. Symptoms vary depending on its cause, but the most common
one by far is diarrhoea and other issues relating to the gastrointestinal system, such as abdominal
pain (Magana-Arachchi and Wanigatunge, 2020).

For clarification, neither malaria nor chemically polluted water that causes health issues are
typically considered waterborne diseases. First, malaria is not a waterborne disease. Malaria is
a serious and sometimes fatal disease which infects humans via a parasite carried by mosquitoes
(and not through contact with contaminated water per se) (WHO, 2019). Malaria causes flu-like
symptoms such as fever and vomiting, but is in contrast to waterborne diseases not associated with
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Table B.1
Common waterborne diseases and symptoms

Pathogen type Example Common symptoms

Bacteria Cholera, Salmonella (Ty-
phoid fever), Shigella
(Dysentery), E.coli, Le-
gionella

Diarrhoea, Fever, blood in
stool

Viruses Rotavirus, Adenovirus, As-
trovirus, Hepatitis A and E

Diarrhoea, Gastroenteritis,
Fever

Protozoa parasites Cryptosporidia, E. histolyt-
ica

Diarrhoea, Gastrointestinal
illness

Parasitic worms (Helminths) Roundworms, Hookworms,
Trematodes (flat worms),
Schistosomiasis

Fever, Abdominal pain, Di-
arrhoea, Gastrointestinal ill-
ness, Malnutrition,

Note: Sources: Magana-Arachchi and Wanigatunge (2020), Hedley and Wani (2015), WHO (2019).

diarrhoea. Second, chemically polluted water is not a waterborne disease. While water polluted
with e.g. pesticides (Boedeker et al., 2020) or arsenic (Mandal et al., 1996) lead to large adverse
health effects, they are not waterborne diseases since this term typically is reserved for pathogen-
induced disease.

B. II Spread, infection and recovery of waterborne diseases

Waterborne diseases spread via water, either by directly drinking water infected with waterborne
disease pathogens or by swimming in contaminated water. For most waterborne diseases, the so-
called faecal-oral channel where contaminated human feces spread to water or food which then
is ingested by another human is the most common source of an outbreak (Magana-Arachchi and
Wanigatunge, 2020). For example, a person could become infected by eating food prepared from
agricultural output using human faeces as fertiliser. Thus, the spread of waterborne disease is
inextricably associated with Water, Hygiene and Sanitation Practices (WASH) and improving these
can break the faecal-oral transmission channel.

Waterborne pathogens occur naturally in rivers and lakes, but grow exponentially under con-
ditions with stagnant water that become contaminated. Stagnant water enables pathogens to form
biofilms and cluster close together which enables faster reproduction. Poor sanitation means an
outbreak can spread across persons and households via the fecal-oral channel. In a lab-controlled
environment, exponential growth of bacteria causing waterborne disease can occur within hours
(Farhat et al., 2018; Zlatanovi et al., 2017). Ling et al. (2018) found that the whole water supply of
a Chinese city became contaminated within six days under conditions where water stayed stagnant
in the city’s plumbing system.

For most contractions of waterborne diseases, the time from first contact to disease outbreak is
a few days. For example, cholera takes between 2 hours to 5 days for a person to show symptoms
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after first ingesting contaminated food or water (Azman et al., 2013). Symptoms can last from days
(e.g. a virus infection) to years (some types of worms), but most common is days or a few weeks
(Percival et al., 2014). In severe cases waterborne disease can be fatal, in particular for young
children, with severe diarrhoea leading to dehydration and death if left untreated.

B. III Waterborne disease burden in Sub-Saharan Africa

According to the UN, the Sustainable Development Goal to achieve safe drinking water for all will
fall short of 1.6 billion people by 2030 (UN, 2022). The consequence of this shortfall is dire: The
United Nations estimate that 829,000 people die from a lack of safely managed drinking water each
year (UN, 2022). Strikingly, the burden of waterborne disease caused by unclean water fall almost
exclusively on developing countries and in particular Sub-Sahran Africa (Anthonj et al., 2018). For
instance, Black et al. (2010) estimate that each day 2,000 children under the age of five die in Africa
due to diarrhoea – the second largest source of child mortality23. However, the mortality number
masks an even higher incidence of disease: Troeger et al. (2018) found that average diarrhoea
episodes per person in Sub-Saharan Africa were 1.05 per year. Thus, waterborne disease does not
only pose a fatal risk, but also when less severe is likely to affect the vast majority of people in the
region several points in their lives.

2318% of total mortality, the largest source of mortality being neonatal conditions in the first 28 days of life for
infants (Black et al., 2010)
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C Descriptive statistics about treatment

Figure C.1
Distribution of WBD Potential

Note: This figure depicts the distribution of waterborne disease potential (WBD Potential), where a ward w during
wave and survey year y has one simulated value between 0 and 1, which is the share of the ward area covered by
stagnant water. The left subplot depicts the distribution of WBD Potential, and to provide additional clarity the right
subplot displays the distribution across five categories of shares of stagnant water.
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D Additional results with DHS

Figure D.1
UN Sanitation ladder: Examples

Note: In this image we provide examples of how the different steps in the UN sanitation may look like. In reality,
there are five steps of the ladder, the highest rung being modern sanitation. However, this category is not represented
in our sample so for our case we consider a four-step ladder of sanitation. In 1, there are no facilities which includes
open defecation. In 2, there are unimproved sanitation facilities that are not integrated to a well-functioning sanitation
system. In 3, we include shared facilities. In 4, we have improved sanitation that are well-maintained and of higher
standard and technology.
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Figure D.2
WBDP by week: Effect on diarrhoea

Note: This figure summarises DiD estimate of WBD Potential on the share of children with recent diarrhoea. Coef-
ficient and 95% confidence intervals are displayed. Here, for each estimation we redefine which week we include as
the measure of WBD Potential. In the first estimation, we define WBD Potential as the share of stagnant water in the
one week preceding the date of survey when the child is tested. In the second estimate, we instead take the share of
stagnant water in the week which starts two weeks before the date of the survey and ends the week before the survey.
Similarly, in the estimation labelled ”3” we define WBD Potential as the share of stagnant water in (only) the week
three weeks prior the date of survey. In all estimations we include calendar month, wave and ward fixed effects as well
as individual and household covariates. Standard errors are clustered on ward-level.
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Table D.1
Effect of WBD Potential on diarrhoea: Sensitivity to control variables

(1) (2) (3) (4) (5) (6)

Dependent: Child has had diarrhoea

WBD Potential 0.249*** 0.273** 0.275** 0.245*** 0.236** 0.246***
(0.0900) (0.112) (0.118) (0.0884) (0.0928) (0.0892)

Mean DV 0.13 0.13 0.13 0.13 0.13 0.13
Obs. 19,399 15,956 15,956 19,399 19,399 19,399
Clusters 252 242 242 252 252 252
Full sample: X X X X
Cov sample: X X
Covariates: X X X X
Local precip: X X
Sampling weights: X

Note: Standard errors in parentheses clustered on DHS gridcell level. All estimations use calendar month, gridcell and
wave fixed effects. * p<0.01 ** p<0.05 *** p<0.1. WBD Potential is the average percent share of area covered in
stagnant water the two weeks prior to date of survey. Individual covariates include: Birth order, twin child, child sex,
child age, mother’s age, mother’s total fertility, household toilet type, wealth index. Full sample includes all children’s
where the outcome, diarrhoea, is available. Covariate sample is the sample with all covariates – only toilet type and
wealth index are ever missing. Column 1 is the specification with the full set of fixed effects but no control variables.
In column 2 all individual covariates are included without accounting for the share of missing, and in column 3 we still
limit the sample to children without controls but excluding covariates. In column 4 we account for missing variables
by imputing an arbitrary number (-999) for missing variables and including a corresponding dummy variable = 1 for
when the variable takes that value. Finally, in column 5 we include local precipitation as a control. Column 5 applies
sampling weights and column 6 is our preferred specification weighout weights.

Table D.2
Shared toilets and the effect of waterborne disease on diarrhoea

(1) (2) (3)

Dependent: Child has had diarrhoea

All Urban Rural

WBD Potential 0.080 0.018 0.036
(0.12) (0.22) (0.21)

Shared toilet 0.027*** 0.017 0.024**
(0.0093) (0.018) (0.010)

WBDP*Shared toilet 0.16 0.36** 0.016
(0.15) (0.18) (0.17)

Obs. 13,088 3,219 9,869
Clusters 237 98 228

Note: Standard errors in parentheses clustered on DHS gridcell level. All estimations use calendar month, gridcell and
wave fixed effects.* p<0.01 ** p<0.05 *** p<0.1. WBD Potential (%) is the average percent share of area covered in
stagnant water the two weeks prior to date of survey. ’Shared toilet’=1 for households who use shared toilet facilities.
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Table D.3
Effect of waterborne disease on diarrhoea: Heterogeneity

(1) (2)
Dependent: Child has had diarrhoea

Sample: Dry cell Rainy cell

WBD Potential 0.287** 0.186
(0.118) (0.121)

Mean DV 0.12 0.14
Obs. 9,416 9,983
Clusters 138 114

Note: Standard errors in parentheses clustered on DHS gridcell level. All estimations use calendar month, gridcell
and wave fixed effects and include individual covariates.* p<0.01 ** p<0.05 *** p<0.1. WBD Potential (%) is the
average percent share of area covered in stagnant water the two weeks prior to date of survey. ’Dry cell’ if average
annual precipitation (1970-2000) is less than 1000mm, ’Rainy’ if exceeds 1000mm.
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E Additional results with test scores

E. I Results with test scores: Specification and heterogeneity

Table E.1 shows additional specifications for the effect of WBD Potential on test scores, and we
find that the main coefficient of interest does not change in an economically meaningful way across
specifications, although we lose some precision when adding wave*month fixed effects if we do
not also include calendar month fixed effects (non-interacted).

In Table E.2 we show heterogeneity by long-run local precipitation, and in Figure E.1 we sum-
marise the estimation results for the effect of WBD Potential by child age.

Table E.1
Effect of WBD Potential on test scores: Additional specifications

(1) (2) (3) (4) (5) (6)
Dependent: Test score (std)

WBD potential -0.716** -0.656** -0.590* -0.683** -0.590* -0.683**
(0.316) (0.314) (0.318) (0.314) (0.318) (0.314)

Local precipitation 0.00318*** 0.00315*** 0.00315***
(0.00118) (0.00122) (0.00122)

Obs. 368,444 368,493 368,493 368,444 368,493 368,444
Clusters 3,842 3,842 3,842 3,842 3,842 3,842
Covs X X X
Ward FE X X X X X X
Wave FE X X
Month FE X X X X
Wave*Month FE X X X X

Note: Results is the effect of WBD Potential on test scores. Standard errors in parentheses clustered on ward. *
p<0.01 ** p<0.05 *** p<0.1. WBD Potential is the average share of ward covered in stagnant water in the two weeks
preceding the date of the survey. Covariates include child’s gender and age, and mother’s age and secondary education,
a wealth index, local past two weeks of ward precipitation. Ward is the treatment unit of observation. Wave is the year
of the survey and waves included are 2011, 2013, 2014, 2015 and 2017. Month is the calendar month of treatment.
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Figure E.1
WBD Potential on test scores, by sex

Note: This figure summarises DiD estimate of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. We separately present results for boys and girls, and further display estimates where we divide wards
by their long-run precipitation. In all estimations we include calendar month, Wave and ward fixed effects as well as
individual and household covariates. Standard errors are clustered on ward-level.

Figure E.2
WBD Potential on test scores, by age

Note: This figure summarises DiD estimate of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. We separately present results by the age of the child at survey. In all estimations we include calendar
month, Wave and ward fixed effects as well as individual and household covariates. Standard errors are clustered on
ward-level.
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Table E.2
Effect of WBD Potential on test scores: By Long-run precipitation

Dependent: Test score (std)

All Dry wards Rainy wards

WBD potential -0.742** -0.812** -0.00542
(0.315) (0.349) (0.729)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173
Wave FE
Ward FE X X X
Month FE X X X

Note: Standard errors in parentheses clustered on ward. WBD Potential is two-week average share of area of ward
covered in stagnant water, ∼(0,1). * p<0.01 ** p<0.05 *** p<0.1. Dry ward if mean precipitation < 1000 mm
precipitation. Rainy ward if ≥ 1000 mm precipitation. Wave, Calendar month, Ward fixed effects, and ward-level
2-week sum of precipitation included in all estimations. Household covariates included are child’s gender and age, and
mother’s age and whether secondary education or above.

Figure E.3
WBD Potential, by urban-rural wards

Note: This figure summarises DiD estimate of WBD Potential on test scores, splitting each subplot by whether the
ward is urban or rural. Coefficient and 95% confidence intervals are displayed. The solid red line represents a zero
coefficient of WBD Potential on test scores, and the dashed black line the estimated coefficient size for the full sample.
Within each subplot we further split wards by their long-term precipitation: Dry ward if long run precipitation <1000
mm per year on average, Rainy ward if ≥ 1000 mm.
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Figure E.4
WBD Potential on test scores, by distance to coast

Note: This figure summarises DiD estimate of WBD Potential on test scores, splitting the sample by the ward’s distance
to the coast in four separate estimations. Coefficient and 95% confidence intervals are displayed. In all estimations we
include calendar month, Wave and ward fixed effects as well as individual and household covariates. Standard errors
are clustered on ward-level.
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E. II Results with test scores: Robustness

Table E.3
WBD Potential on test scores, binary treatment definition

Dependent: Test score (std)

All Dry wards Rainy wards

WBDP ≥ 5% -0.101** -0.102** -0.0932
(0.0406) (0.0457) (0.0890)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173
Wave*District FE
Ward FE X X X
Month FE X X X

Note: Standard errors in parentheses clustered on ward. * p<0.01 ** p<0.05 *** p<0.1. WBD Potential > 5% is
in indicator for whether the two-week average share of area of ward covered in stagnant water exceeded 5%. Dry
ward if mean precipitation < 1000 mm precipitation. Rainy ward if ≥ 1000 mm precipitation. Wave, Calendar month,
Ward fixed effects, and ward-level 2-week sum of precipitation, squared WBDP included in all estimations. Household
covariates included are child’s gender and age, and mother’s age and whether secondary education or above.

Given that the results show high autocorrelation of WBD Potential over time, one concern is
that our model captures a phenomenon in the future, which we then estimate effects for due to the
correlation with past events. Such would be the case if past WBD Potential captures that children
expect more favourable environmental conditions or events in the future in a way which affects
test scores. If this is the case, future WBD Potential (in terms of the date children are surveyed)
should better predict the change in test scores than past events. However, due to the high correlation
(95%) between weeks, models including weekly WBD Potential in the same estimation are likely to
induce problems associated with multicollinearity. Figure E.10 displays two attempts to disentangle
the potential role of future WBD Potential while reducing the influence of multicollinearity. First,
in the left subplot, we estimate a model with two variables: Our main WBD Potential measure
(average two weeks pre survey), and the difference between WBD Potential with that measure and
the WBD Potential as measured two weeks in the future. Thus, the coefficient would measure the
marginal effect on test scores from the change in WBD Potential two weeks prior to the survey and
two weeks past. We find that the main measure has a negative effect on test scores consistent with
our main result, while the ”Future minus Past WBD Potential” is measured with a coefficient close
to zero and more imprecision. The right subplot Divides up WBD Potential into three time periods
across a longer time span: WBD Potential 2-9 weeks prior to the survey, WBD Potential one week
on either side of the week of the survey, and WBD Potential measured 2-3 weeks after the survey.
As expected from our hypothesis on the mechanism and the results in Figure E.9, we find that the
WBD Potential 2-9 weeks prior to the survey is negative with a similar magnitude to that of our
main results with the other two indicators centred closer to zero. However all three coefficients are
statistically insignificant from zero.
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Table E.4
Exploring non-linearities: Including squared WBDP

Dependent: Test score (std)

All Dry wards Rainy wards

WBD potential -1.133** -1.423** -0.346
(0.557) (0.645) (1.785)

WBDP Squared 1.152 1.560 3.272
(0.974) (1.072) (8.976)

Obs. 368,444 178,449 189,995
Clusters 3,842 1,669 2,173

Note: Standard errors in parentheses clustered on ward. WBD Potential is two-week average share of area of ward
covered in stagnant water, ∼(0,1). Dry ward if mean precipitation < 1000 mm precipitation. Rainy ward if ≥ 1000
mm precipitation. Wave, Calendar month, Ward fixed effects, and ward-level 2-week sum of precipitation. Household
covariates included are child’s gender and age, and mother’s age and whether secondary education or above.

Figure E.5
WBDP as indicator with different thresholds

Note: This figure summarises DiD estimate of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. Here, we provide a series of dummies for different thresholds of WBD Potential. At baseline, WBD
Potential is less than 1%. The first dummy variable thus captures the effect on test scores from WBD Potential between
1 and 5%. Calendar month, wave and ward fixed effects are included in the estimation as well as individual and
household covariates. Standard errors are clustered on ward-level.
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Figure E.6
Randomisation test: Effect of WBD Potential on test scores

Note: This figure depicts the coefficient main DiD estimate capturing the effect of WBD Potential on test scores for
500 randomisation inference tests where WBD Potential has been permuted and the coefficients of WBD Potential on
test scores summarised in a kernel density plot. Wave, Calendar month and Ward fixed effects and individual covariates
are included in all estimations as well as individual covariates and standard errors are clustered by ward.
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Figure E.7
Comparison of TWFE and alternative estimator robust to heterogeneous treatment effects

Note: This figure reports the DiD estimate and 95% confidence intervals for two different estimators when running
the effect of WBD Potential on test scores: Two-way fixed effects (denoted TWFE) and the group-time DiD estimator
robust to heterogeneous treatment effects as discussed in and developed by de Chaisemartin and D’Haultfoeuille (2018)
(denoted DHDC). For this comparison, we re-frame our treatment as a binary indicator as in Table E.3, such that a
ward is treated during wave in year y if the share of stagnant water exceeds 5%. Here, we redefine WBD Potential
into a dummy which is equal to 1 for wards in waves where the simulated stagnant water share exceeds 5%. Since the
standard errors are bootstrapped for the DHDC estimator, we also provide a comparison to the TWFE with bootstrapped
standard errors instead of clustered as in our main specification. Bootstrapped standard errors produced through 999
replications.
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Figure E.8
Varying weeks in average measure of WBDP

Note: This figure summarises DiD estimate of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. Here, for each estimation we redefine the aggregation average of WBD Potential. In the first estimation,
we define WBD Potential as the share of stagnant water in the one week preceding the date of survey when the child is
tested. In the second estimate, we instead take the average share of stagnant water in the two weeks preceding the date
of survey, and so on. The highlighted red estimate and confidence intervals reflect the definition we use in our main
results, where we take the average of the two weeks. In all estimations we include calendar month, wave and ward
fixed effects as well as individual and household covariates. Standard errors are clustered on ward-level.
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Figure E.9
WBDP, by week discretely

Note: This figure summarises DiD estimate of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. Here, for each estimation we redefine which week we include as the measure of WBD Potential. In the
first estimation, we define WBD Potential as the share of stagnant water in the one week preceding the date of survey
when the child is tested. In the second estimate, we instead take the share of stagnant water in the week which starts
two weeks before the date of the survey and ends the week before the survey. Similarly, in the estimation labelled ”3”
we define WBD Potential as the share of stagnant water in (only) the week three weeks prior the date of survey. In all
estimations we include calendar month, wave and ward fixed effects as well as individual and household covariates.
Standard errors are clustered on ward-level.

Figure E.10
Placebo: Effect of future WBD Potential

Note: This figure summarises DiD estimates of WBD Potential on test scores. Coefficient and 95% confidence intervals
are displayed. Here, the two subplot represent one estimation each. On the left, we estimate with the main specification
WBD Potential, and include the effect of the change in WBD Potential between the average stagnant water share pre
survey, and the average stagnant water share post survey. On the right, we instead estimate longer-run means: Weeks
2-9 is the WBD Potential as the average 2-9 weeks prior to the survey. Weeks 1 pre- 1 post is the average WBD
Potential the two weeks around the date of the survey, and the last estimate similarly is the average WBD Potential in
the two weeks after the survey.
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Table E.5
WBD Potential, simulation vs GWS

Dependent: Test score (std)

All Dry Rainy Rural Urban

Panel A. Treatment from main simulation

WBD potential -0.742** -0.812** -0.00542 -0.732** -0.896
(0.315) (0.349) (0.729) (0.335) (0.953)

Obs. 368,444 178,449 189,995 308,177 60,267
Clusters 3,842 1,669 2,173 3,354 488

Panel B. Treatment from GWS satellite data

WBD potential -13.63 -22.57 14.45 6.820 -468.1
(56.36) (87.82) (65.27) (55.83) (286.8)

Corr 0.13 0.16 0.12 0.02 0.52
Obs. 368,444 178,449 189,995 308,177 60,267
Clusters 3,842 1,669 2,173 3,354 488

Note: Standard errors parentheses clustered on ward. Dry ward if mean annual precipitation < 1000 mm, rainy ward if
≥ 1000 mm. Rural and Urban also divide the sample by ward. Wave, Calendar month and Ward fixed effects included
in all estimations. * p<0.01 ** p<0.05 *** p<0.1. WBD Potential is two-week average share of area of ward covered
in stagnant water, ∼(0,1). Panel A replicates the main result, where WBD Potential is the output from the hydrological
simulation; two week average share of ward area covered in stagnant water. Panel B outputs a treatment generated
from the GWS model and data, but is similarly the two week average share of ward area covered in stagnant water.
”Corr” the correlation between the Panel A and Panel B definitions of WBD Potential within each estimation sample.
All estimations include individual covariates: Child’s gender and age, and mother’s age and whether she secondary
education or above, and an index for household wealth.
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